
Babel

User guide

Version 25.1

2025/01/01

Javier Bezos
Current maintainer

Johannes L. Braams
Original author

Localization and

internationalization

Unicode

TEX

LuaTEX

pdfTEX

XeTEX

Contents

1 The basic user interface 3

1.1 Monolingual documents: the ‘classical’ way 3

1.2 Monolingual documents: the ‘modern’ way 6

1.3 Mostly monolingual documents: lazy loading 7

1.4 Multilingual documents: the ‘classical’ way 7

1.5 Multilingual documents: the ‘modern’ way 8

1.6 Languages supported by babel in the ‘classical’ mode 9

1.7 Languages supported by babel in the ‘modern’ mode 10

1.8 Fonts in Unicode engines . 15

1.9 Basic language selectors . 18

1.10 Auxiliary language selectors . 19

1.11 Plain . 20

2 More on language loading and selection 21

2.1 A couple of tools . 21

2.2 Accessing language info . 22

2.3 Package options . 24

2.4 The base option . 25

2.5 provide and \babelprovide – ini files . 26

2.6 Selection based on BCP 47 tags . 27

3 Tailoring, customizing and modifying a language 28

3.1 Captions . 28

3.2 Modifiers . 29

3.3 Language attributes . 30

3.4 Casing . 30

3.5 Modifying and adding values to ini files 30

3.6 Hooks . 31

3.7 Manage auxiliary files . 33

3.8 Code based on the selector . 33

3.9 Presets . 33

4 Creating a language 34

5 Locale features 38

5.1 Hyphenation and line breaking – 1. Commands 38

5.2 Hyphenation and line breaking – 2. ‘Provide’ options 40

5.3 Shorthands – 1. Commands . 41

5.4 Shorthands – 2. Package options . 44

5.5 Digits and counters . 45

5.6 Dates . 47

5.7 Transforms . 47

5.8 Support for xetex interchar . 51

5.9 Scripts . 52

5.10 Bidirectional and right-to-left text . 53

5.11 Unicode character properties in luatex . 57

5.12 Tweaking some babel features . 58

6 Relation with other packages 58

6.1 Compatibility . 58

6.2 Related packages . 59

6.3 Indexing . 59

7 Tentative and experimental code 59

8 Loading language hyphenation rules with language.dat 60

8.1 Format . 60

1

9 The interface between the core of babel and the language definition files 60

9.1 Guidelines for contributed languages . 61

9.2 Basic macros . 62

9.3 Skeleton . 63

9.4 Support for active characters . 64

9.5 Support for saving macro definitions . 64

9.6 Support for extending macros . 65

9.7 Macros common to a number of languages 65

9.8 Encoding-dependent strings . 65

10 Acknowledgements 68

Troubleshoooting

Package inputenc Error: Invalid UTF-8 byte ... 5

Unknown language ’LANG’ . 5

No hyphenation patterns were preloaded for (babel) the language ’LANG’ into

the format . 5

You are loading directly a language style . 5

Package fontspec Info: Language ’<lang>’ not explicitly supported within font

’’ with script ’<script>’. 17

Package babel Info: The following fonts are not babel standard families 18

Argument of \language@active@arg” has an extra } 41

2

What is this document about? This user guide focuses on internationalization and

localization with LATEX and pdftex, luatex and xetex with the babel package. There are

also some notes on its use with e-Plain and pdf-Plain TEX.

I only need learn the most basic features. The first subsections (1.1-1.6) describe the

ways of loading a language, which is usually all you need.

I don’t like manuals. I prefer sample files. This manual contains lots of examples and

tips, but in GitHub there are many sample files.

What if I’m interested only in the latest changes? Changes and new features with

relation to version 3.8 are highlighted with X.XX (⊕ is a link to the babel site), and there

are some notes for the latest versions in the babel site. The most recent features can still

be unstable. Remember version 24.1 follows 3.99, because of a new numbering scheme.

Can I help? Sure! You can follow the development of babel in GitHub and make

suggestions, including requirements for some language or script. Feel free to fork it and

make pull requests. If you are the author of a package, send me a few test files which I’ll

add to mine, so that possible issues can be caught in the development phase.

It doesn’t work for me! You can ask for help in some forums like tex.stackexchange, but if

you have found a bug, I strongly beg you to report it in GitHub, which is much better

than just complaining on an e-mail list or a web forum. Remember warnings are not

errors by themselves, they just warn about possible problems or incompatibilities.

Hyphenation rules are maintained separately here.

How can I contribute a new language? See section 9.1 for contributing a language.

Where is the code? Run

lualatex --jobname=babel-code \let\babelcode\relax\input{babel.dtx}.

1. The basic user interface

There are two ways to load a language with babel, namely, the old good ‘classical’ one,

based on mostly self-contained declarations in a file with ldf extension, and the ‘modern’

one, based on a brand new mechanism based on descriptive ini files.

‘Classical’ doesn’t mean outdated or obsolete. In fact, this is the recommended method in

most languages where an ldf file exists. Below is a list of the supported languages. See also

Which method for which language in the babel site.

Basically, what you need is typically:

• Tell babel which language or languages are required.

• With non-Latin scripts and Unicode engines (luatex is the preferred one), select a

suitable font (sec. 1.8)

• In multilingual documents, switch the language in the text body (sec. 1.9).

You can find basic info and minimal luatex example files for about 300 locales in the

GitHub repository.

1.1. Monolingual documents: the ‘classical’ way

In most cases, a single language is required, and then all you need in LATEX is to load the

package using its standard mechanism for this purpose, namely, passing that language as

an optional argument. In addition, you may want to set the font and input encodings.

Another approach is making the language a global option in order to let other packages

detect and use it. This is the standard way in LATEX for an option – in this case a language –

to be recognized by several packages (in other words, babel doesn’t set the languages, it

just recognizes the options passed to the class or the package).

3

https://github.com/latex3/babel/tree/master/samples
https://latex3.github.io/babel/
https://github.com/latex3/babel
https://github.com/latex3/babel/issues
https://github.com/hyphenation/tex-hyphen
https://latex3.github.io/babel/guides/which-method-for-which-language.html
https://latex3.github.io/babel/guides/index-locale.html

Many languages are compatible with luatex and xetex, but a few only work with pdftex.

When these engines are used, the Latin script is covered by default in current LATEX

(provided the document encoding is UTF-8). Other scripts require loading fontspec,

although babel provides a higher level interface (see \babelfont below).

EXAMPLE Here is a simple full example for “traditional” TEX engines (see below for luatex

and xetex). The package fontenc does not belong to babel, but it is included in the

example because typically you will need it. It assumes UTF-8, the default encoding:

pdftex
\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage[french]{babel}

\begin{document}

Plus ça change, plus c'est la même chose!

\end{document}

Now consider something like:

\documentclass[french]{article}

\usepackage{babel}

\usepackage{varioref}

With this setting, the package varioref will also see the option french and will be able

to use it.

EXAMPLE Now a simple monolingual document in Russian (text from the Wikipedia) with

luatex or xetex. Note neither fontenc nor inputenc is necessary, and a so-called Unicode

font must be loaded (in this example with the help of \babelfont, described below).

luatex/xetex
\documentclass[russian]{article}

\usepackage{babel}

\babelfont{rm}{DejaVu Serif}

\begin{document}

Россия, находящаяся на пересечении множества культур, а также

с учётом многонационального характера её населения, — отличается

высокой степенью этнокультурного многообразия и способностью к

межкультурному диалогу.

\end{document}

NOTE Because of the way babel has evolved, “language” can refer to (1) a set of

hyphenation patterns as preloaded into the format, (2) a package option, (3) an ldf file,

and (4) a name used in the document to select a language. Please, read the

documentation for specific languages for further info.

NOTE Babel does not make any readjustments by default in font size, vertical positioning

or line height. This is on purpose because the optimal solution depends on the

document layout and the font, and very likely the most appropriate one is a

combination of these settings.

4

NOTE Although it has been customary to recommend placing \title, \author and other

elements printed by \maketitle after \begin{document}, mainly because of

shorthands, it is advisable to keep them in the preamble. Currently there is no real need

to use shorthands in those macros.

NOTE With hyperref you may want to set the PDF document language with something like:

\usepackage[pdflang=es-MX]{hyperref}

This is not currently done by babel and you must set it by hand. The PDF document

language can also be set with \DocumentMetadata, before \documentclass; for

example:

\DocumentMetadata{lang=es-MX}

WARNING In the preamble, no language has been selected, except hyphenation patterns

and the name assigned to \localename (and \languagename) (in particular, shorthands,

captions and date are not activated). If you need to define boxes and the like in the

preamble, you might want to use some of the language selectors described below.

TROUBLESHOOTING Package inputenc Error: Invalid UTF-8 byte ... A common source of

trouble is a wrong setting of the input encoding. Make sure you set the encoding

actually used by your editor, or even better, make sure the encoding in your editor is set

to UTF-8.

TROUBLESHOOTING Another typical error when using babel is the following:

! Package babel Error: Unknown language 'LANG'. Either you have

(babel) misspelled its name, it has not been installed,

(babel) or you requested it in a previous run. Fix its name,

(babel) install it or just rerun the file, respectively. In

(babel) some cases, you may need to remove the aux file

The most frequent reason is, by far, the latest (for example, you included spanish, but

you realized this language is not used after all, and therefore you removed it from the

option list). In most cases, the error vanishes when the document is typeset again, but in

more severe ones you will need to remove the aux file.

TROUBLESHOOTING No hyphenation patterns were preloaded... The following warning is

about hyphenation patterns, which are not under the direct control of babel:

Package babel Warning: No hyphenation patterns were preloaded for

(babel) the language `LANG' into the format.

(babel) Please, configure your TeX system to add them and

(babel) rebuild the format. Now I will use the patterns

(babel) preloaded for \language=0 instead on input line 57.

The document will be typeset, but very likely the text will not be correctly hyphenated.

Some languages in some system may be raising this warning wrongly (because they are

not hyphenated) – just ignore it. See the manual of your distribution (MacTEX, MikTEX,

TEXLive, etc.) for further info about how to configure it.

TROUBLESHOOTING You are loading directly a language style. Loading directly sty files in

LATEX (i.e., \usepackage{〈language〉}) was deprecated many years ago and you will get

the error:

5

! Package babel Error: You are loading directly a language style.

(babel) This syntax is deprecated and you must use

(babel) \usepackage[language]{babel}.

NOTE You will see an ‘info’ in the log file stating some data is being loaded from an ini

file. It includes standardized names for language and script used by \babelfont, and

the BCP 47 tag, required in some cases by \Make〈Xxxxx〉case.

1.2. Monolingual documents: the ‘modern’ way

When, for whatever reason, the ‘classical’ way with the ldf is not suitable for the needs of

a document or a document system, you have to resort to a different mechanism, which is

activated with the package option provide=* (in monolingual documents).

EXAMPLE Although Georgian has its own ldf file, here is how to declare this language in

Unicode engines. Here, as in a previous example, we resort to \babelfont to set the

font for this language (with the Harfbuzz renderer, just to show how to set it, because

here the Node renderer should be fine).

luatex/xetex
\documentclass{book}

\usepackage[georgian, provide=*]{babel}

\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

\begin{document}

\tableofcontents

\chapter{სამზარეულო და სუფრის ტრადიციები}

ქართული ტრადიციული სამზარეულო ერთ-ერთი უმდიდრესია მთელ მსოფლიოში.

\end{document}

And with a global option:

\documentclass[georgian]{book}

\usepackage[provide=*]{babel}

\babelfont{rm}[Renderer=Harfbuzz]{DejaVu Sans}

NOTE This option actually loads the language with \babelprovide and the import option,

described below. Instead of an asterisk, you may provide a list of options for

\babelprovide enclosed in braces (import is included by default).

EXAMPLE For a text in Chinese, you can write in the preamble:

luatex/xetex
\usepackage[chinese, provide=*]{babel}

\babelfont{rm}{FandolSong}

The skip between characters is 0 pt plus .1 pt, which can be modified with an option

(explained below) in provide. For example:

luatex/xetex
\usepackage[chinese, provide={ intraspace=0 .2 0 }]{babel}

6

1.3. Mostly monolingual documents: lazy loading

3.39⊕ Very often, multilingual documents consist of a main language with small pieces of

text in another languages (words, idioms, short sentences). Typically, all you need is to set

the line breaking rules and, perhaps, the font. In such a case, there is no need to clutter the

preamble (particularly the class and package options) because babel does not require

declaring these secondary languages explicitly — the basic settings are loaded on the fly

when the language is first selected.

This is particularly useful in documents with many languages, and also when there are

short texts of this kind coming from an external source whose contents are not known

beforehand (for example, titles in a bibliography). In this regard, it is worth remembering

that \babelfont does not load any font until required, so that it can be used just in case.

3.84⊕ With pdftex, when a language is loaded on the fly (internally it’s loaded with

\babelprovide) selectors now set the font encoding based on the list provided when

loading fontenc. Not all scripts have an associated encoding, so this feature works only

with Latin, Cyrillic, Greek, Arabic, Hebrew, Cherokee, Armenian, and Georgian, provided a

suitable font is found.

EXAMPLE A trivial document with the default font in English and Spanish, and FreeSerif

in Russian is:

luatex/xetex
\documentclass[english]{article}

\usepackage{babel}

\babelfont[russian]{rm}{FreeSerif}

\begin{document}

English. \foreignlanguage{russian}{Русский}.

\foreignlanguage{spanish}{Español}.

\end{document}

If you need the ‘modern’ way to load the main language set as global option, just write:

\usepackage[provide=*]{babel}

NOTE Instead of its name, you may prefer to select the language with the corresponding

BCP 47 tag. This alternative, however, must be activated explicitly, because a two- or

three-letter word is a valid name for a language (e.g., lu can be the locale name with tag

khb or the tag for lubakatanga). See section 2.6 for further details.

1.4. Multilingual documents: the ‘classical’ way

In multilingual documents, just use a list of the required languages either as package or as

class options. The last language is considered the main one, activated by default.

Sometimes, the main language changes the document layout (e.g., spanish and french).

To switch the language there are two basic macros, described below in detail:

\selectlanguage is used for blocks of text, while \foreignlanguage is for chunks of text

inside paragraphs.

EXAMPLE In LATEX, the preamble of the document:

\documentclass{article}

\usepackage[dutch,english]{babel}

would tell LATEX that the document would be written in two languages, Dutch and

English, and that English would be the first language in use, and the main one.

7

https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.84.html

EXAMPLE A full bilingual document with pdftex follows. The main language is french,

which is activated when the document begins. It assumes UTF-8:

pdftex
\documentclass{article}

\usepackage[T1]{fontenc}

\usepackage[english,french]{babel}

\begin{document}

Plus ça change, plus c'est la même chose!

\selectlanguage{english}

And an English paragraph, with a short text in

\foreignlanguage{french}{français}.

\end{document}

EXAMPLE With luatex and xetex, the following bilingual, single script document in UTF-8

encoding just prints a couple of ‘captions’ and \today in Danish and Vietnamese. No

additional packages are required, because the default font supports both languages.

luatex/xetex
\documentclass{article}

\usepackage[vietnamese,danish]{babel}

\begin{document}

Danish: \prefacename, \alsoname, \today.

\selectlanguage{vietnamese}

Vietnamese: \prefacename, \alsoname, \today.

\end{document}

NOTE Although strongly discouraged, languages can be set as global and as package

option at the same time, but in such a case you should set explicitly the main language

with the package option main, described below:

\documentclass[italian]{book}

\usepackage[ngerman,main=italian]{babel}

NOTE Once a language is loaded, you can select it with the corresponding BCP 47 tag. See

section 2.6 for further details.

NOTE Documents with several input encodings are not frequent, but sometimes are useful.

You can set different encodings for different languages as the following example shows:

\addto\extrasfrench{\inputencoding{latin1}}

\addto\extrasrussian{\inputencoding{koi8-r}}

1.5. Multilingual documents: the ‘modern’ way

If lazy loading is not enough for your purposes, you can still tell which languages should be

loaded as either class or package options. You can combine the ‘classical’ and the ‘modern’

ways with three options to set which method you want, which cover the most typical cases:

8

• provide=* is the option explained above for monolingual documents. If there are more

languages, it applies only to the main language, while the rest will be loaded in the

‘classical’ way.

• provide+=* loads the main language in the ‘classical’ way, and the rest in the ‘modern’

one.

• provide*=* is the same for all languages, i.e., main and secondary ones are loaded in

the ‘modern’ way.

More complex combinations can be handled with \babelprovide, explained below.

EXAMPLE Your document is written in Thai with large chunks in Dutch and German, and

you want the ldf files in the latter because, for example, you need their shorthands.

The font is Norasi, which covers the three languages:

luatex/xetex
\usepackage[dutch,ngerman,thai,provide=*]{babel}

\babelfont{rm}{Norasi}

This will load dutch and ngerman in the classical ldfmode, but thai in the modern ini

mode. Other options are:

\usepackage[dutch,ngerman,thai]{babel}

which will use the classical mode for in languages (as decribed in the previous section,

but note thai.ldf is not supported in Unicode engines), and:

\usepackage[dutch,german,thai,provide*=*]{babel}

which will use the modern mode in all languages (note the correct name here is german.

(The option \usepackage[dutch,ngerman,thai,provide+=*]{babel} doesn’t make

much sense in this case.)

1.6. Languages supported by babel in the ‘classical’ mode

(To be updated.) In the following table most of the languages supported by babel with an

ldf file are listed, together with the names of the options which you can load babel with

for each language. Note this list is open and the current options may be different. It does

not include ini files (see below).

Except in a few cases (e.g., ngerman, serbianc, acadian) names are those of the Unicode

CLDR (or based on them).

Most of them work out of the box, but some may require extra fonts, encoding files, a

preprocessor or even a complete framework (like CJK or luatexja).

This list is still under revision.

Recommended names are set in red.

Additional languages are set in gray.

Discouraged and deprecated names are not included.

There are some notes in a few languages.

afrikaans

albanian

arabic

Requires arabi.

azerbaijani

basque

belarusian

bosnian

breton

bulgarian

catalan

croatian

9

czech

danish

dutch

english

american

USenglish

australian

british

UKenglish

canadian

newzealand

esperanto

estonian

ethiop

farsi

Requires arabi.

finnish

french

acadian

friulian

galician

georgian

german

This block refers to the old ortography. For the

modern one, use the names in the block ngerman.

austrian

swissgerman

Swiss High German

greek

ibycus

bgreek

hebrew

hindi

Requires velthuis.

hungarian

magyar

icelandic

indonesian

interlingua

irish

italian

japanese

kurmanji

latin

latvian

lithuanian

lowersorbian

macedonian

malay

mongolian

ngerman

This block refers to the new ortography.

naustrian

nswissgerman

Swiss High German

northernsami

norwegian

norsk

nynorsk

occitan

piedmontese

pinyin

polish

portuguese

brazilian

romanian

romansh

russian

scottishgaelic

scottish

serbianc

Cyrillic script

serbian

Latin script

slovak

slovene

slovenian

spanglish

spanish

swedish

thai

thaicjk

turkish

turkmen

ukrainian

uppersorbian

vietnamese

welsh

EXAMPLE An example of a language requiring a preprocessor and a separate package is

hindi. If you have got the velthuis/devnag package, create a file with extension .dn:

\documentclass{article}

\usepackage[hindi]{babel}

\begin{document}

{\dn devaanaa.m priya.h}

\end{document}

Then preprocess it with devnag 〈file〉, which creates 〈file〉.tex; you can then typeset the

latter with LATEX.

1.7. Languages supported by babel in the ‘modern’ mode

Here is the list of the names currently supported with ini locale files, with \babelprovide

(or provide=). With these languages, \babelfont loads (if not done before) the language

10

and script names (even if the language is defined as a package option with an ldf file).

These are also the names recognized by \babelprovide with a valueless import, which

will load the ini file with the tag given in parenthesis.

Following the current common practice (for example, the Unicode CLDR), all locales are

organized in a flat structure. This eases their identification and customization.

Many locale are quite usable, provided captions and dates are not required (which is a

very frequent case, particularly in ancient languages). So, they are included in the default

babel distribution. This can serve to encourage contributions, too. A warning will

remember they are ‘bare minimum locales’. They are set in gray in the following list.

Recommended names are set in red.

In variants with the region or the script name (which are not highlighted), prefer the full forms.

Bare minimum locales are set in gray.

Discouraged and deprecated names are not included.
u means Unicode captions; l means LICR captions.

There are some notes in a few locales.

abkhazian (ab)

afar (aa)

afrikaans
ul

(af)

aghem (agq)

akan (ak)

akkadian (akk)

albanian
ul

(sq)

amharic
ul

(am)

ancientegyptian (egy)

ancientgreek
ul

(grc)

It’s a different language from greek.

arabic
u
(ar)

arabic-algeria
u
(ar-DZ)

arabic-dz
u
(ar-DZ)

arabic-egypt
u
(ar-EG)

arabic-eg
u
(ar-EG)

arabic-iraq
u
(ar-IQ)

arabic-iq
u
(ar-IQ)

arabic-jordan
u
(ar-JO)

arabic-jo
u
(ar-JO)

arabic-lebanon
u
(ar-LB)

arabic-lb
u
(ar-LB)

arabic-morocco
u
(ar-MA)

arabic-ma
u
(ar-MA)

arabic-palestinianterritories
u
(ar-PS)

arabic-ps
u
(ar-PS)

arabic-saudiarabia
u
(ar-SA)

arabic-sa
u
(ar-SA)

arabic-syria
u
(ar-SY)

arabic-sy
u
(ar-SY)

arabic-tunisia
u
(ar-TN)

arabic-tn
u
(ar-TN)

aramaic (arc)

aramaic-nabataean (arc-nbat)

aramaic-nbat (arc-nbat)

aramaic-palmyrene (arc-palm)

aramaic-palm (arc-palm)

armenian
ul

(hy)

assamese
u
(as)

asturian
ul

(ast)

asu (asa)

atsam (cch)

avestan (ae)

awadhi (awa)

aymara (ay)

azerbaijani
ul

(az)

azerbaijani-cyrillic (az-Cyrl)

azerbaijani-cyrl (az-Cyrl)

azerbaijani-latin (az-Latn)

azerbaijani-latn (az-Latn)

bafia (ksf)

balinese (ban)

baluchi (bal)

bambara (bm)

bangla
u
(bn)

bengali
u
(bn)

basaa (bas)

bashkir (ba)

basque
ul

(eu)

bataktoba (bbc)

bavarian (bar)

belarusian
ul

(be)

bemba (bem)

bena (bez)

bhojpuri (bho)

blin (byn)

bodo (brx)

bosnian
ul

(bs)

bosnian-cyrillic (bs-Cyrl)

bosnian-cyrl (bs-Cyrl)

bosnian-latin
ul

(bs-Latn)

bosnian-latn
ul

(bs-Latn)

breton
ul

(br)

bulgarian
ul

(bg)

buriat
ul

(bua)

burmese (my)

cantonese (yue)

catalan
ul

(ca)

cebuano (ceb)

centralatlastamazight (tzm)

centralkurdish
u
(ckb)

sorani
u
(ckb)

centralkurdish-latin
u
(ckb-Latn)

centralkurdish-latn
u
(ckb-Latn)

chakma (ccp)

chechen (ce)

11

cherokee (chr)

chiga (cgg)

chinese
u
(zh)

chinese-simplified
u
(zh-Hans)

chinese-hans
u
(zh-Hans)

chinese-traditional
u
(zh-Hant)

chinese-hant
u
(zh-Hant)

chinese-simplified-

hongkongsarchina (zh-Hans-HK)

chinese-hans-hk (zh-Hans-HK)

chinese-simplified-

macausarchina (zh-Hans-MO)

chinese-hans-mo (zh-Hans-MO)

chinese-simplified-singapore (zh-Hans-SG)

chinese-hans-sg (zh-Hans-SG)

chinese-hant-hk (zh-Hant-HK)

chinese-traditional-

hongkongsarchina (zh-Hant-HK)

chinese-hant-mo (zh-Hant-MO)

chinese-traditional-

macausarchina (zh-Hant-MO)

churchslavic
u
(cu)

churchslavic-cyrs
u
(cu-Cyrs)

churchslavic-glag (cu-Glag)

churchslavic-glagolitic (cu-Glag)

churchslavic-oldcyrillic
u
(cu-Cyrs)

chuvash (cv)

classicalmandaic (myz)

colognian (ksh)

coptic (cop)

cornish (kw)

corsican (co)

croatian
ul

(hr)

czech
ul

(cs)

danish
ul

(da)

divehi (dv)

dogri (doi)

duala (dua)

dutch
ul

(nl)

dzongkha (dz)

egyptianarabic (arz)

Masri or Colloquial Egyptian, with tag arz,

different from Standard Arabic as spoken in

Egypt, with tag ar-EG.

embu (ebu)

english
ul

(en)

american
ul

(en-US)

americanenglish
ul

(en-US)

australian
ul

(en-AU)

australianenglish
ul

(en-AU)

british
ul

(en-GB)

britishenglish
ul

(en-GB)

canadian
ul

(en-CA)

canadianenglish
ul

(en-CA)

english-australia
ul

(en-AU)

english-au
ul

(en-AU)

english-canada
ul

(en-CA)

english-ca
ul

(en-CA)

english-unitedkingdom
ul

(en-GB)

english-gb
ul

(en-GB)

english-newzealand
ul

(en-NZ)

english-unitedstates
ul

(en-US)

english-nz
ul

(en-NZ)

english-us
ul

(en-US)

erzya (myv)

esperanto
ul

(eo)

estonian
ul

(et)

ewe (ee)

ewondo (ewo)

faroese (fo)

filipino (fil)

finnish
ul

(fi)

french
ul

(fr)

acadian
ul

(fr-x-acadian)

canadianfrench
ul

(fr-CA)

swissfrench
ul

(fr-CH)

french-belgium
ul

(fr-BE)

french-be
ul

(fr-BE)

french-canada
ul

(fr-CA)

french-ca
ul

(fr-CA)

french-luxembourg
ul

(fr-LU)

french-lu
ul

(fr-LU)

french-switzerland
ul

(fr-CH)

french-ch
ul

(fr-CH)

friulian
ul

(fur)

fulah (ff)

ga (gaa)

galician
ul

(gl)

ganda (lg)

geez (gez)

georgian
u
(ka)

german
ul

(de)

Note the ldf names differ. See note above.

german-traditional
ul

(de-1901)

austrian
ul

(de-AT)

german-austria
ul

(de-AT)

german-at
ul

(de-AT)

german-austria-traditional
ul

(de-AT-1901)

swisshighgerman
ul

(de-CH)

swissgerman, with tag gsw is a different language.

german-switzerland
ul

(de-CH)

german-ch
ul

(de-CH)

german-switzerland-

traditional
ul

(de-CH-1901)

gothic (got)

greek
ul

(el)

monotonicgreek
ul

(el)

polytonicgreek
ul

(el-polyton)

guarani (gn)

gujarati
u
(gu)

gusii (guz)

haryanvi (bgc)

hausa
ul

(ha)

hausa-ghana (ha-GH)

hausa-gh (ha-GH)

hausa-niger (ha-NE)

hausa-ne (ha-NE)

hawaiian (haw)

hebrew
ul

(he)

hindi
u
(hi)

hmongnjua (hnj)

hungarian
ulll

(hu)

icelandic
ul

(is)

igbo (ig)

inarisami (smn)

indonesian
ul

(id)

12

ingush (inh)

interlingua
ul

(ia)

inuktitut (iu)

irish
ul

(ga)

italian
ul

(it)

japanese
u
(ja)

javanese (jv)

jju (kaj)

jolafonyi (dyo)

kabuverdianu (kea)

kabyle (kab)

kaingang (kgp)

kako (kkj)

kalaallisut (kl)

kalenjin (kln)

kamba (kam)

kannada
u
(kn)

kashmiri (ks)

kazakh (kk)

khmer
u
(km)

kikuyu (ki)

kinyarwanda (rw)

komi (kv)

konkani (kok)

korean
u
(ko)

korean-han
u
(ko-Hani)

korean-hani
u
(ko-Hani)

koyraborosenni (ses)

koyrachiini (khq)

kwasio (nmg)

kyrgyz (ky)

ladino (lad)

lakota (lkt)

langi (lag)

lao
u
(lo)

latin
ul

(la)

ecclesiasticallatin
ul

(la-x-ecclesia)

classicallatin
ul

(la-x-classic)

medievallatin
ul

(la-x-medieval)

latvian
ul

(lv)

lepcha (lep)

ligurian (lij)

limbu (lif)

limbu-limb (lif-limb)

limbu-limbu (lif-limb)

lineara (lab)

lingala (ln)

lithuanian
ulll

(lt)

lombard (lmo)

lowersorbian
ul

(dsb)

lowgerman (nds)

lu (khb)

lubakatanga (lu)

luo (luo)

luxembourgish
ul

(lb)

luyia (luy)

macedonian
ul

(mk)

machame (jmc)

magyar
ulll

(hu)

maithili (mai)

makasar (mak)

makasar-bugi (mak-Bugi)

makasar-buginese (mak-Bugi)

makhuwameetto (mgh)

makonde (kde)

malagasy (mg)

malay
ul

(ms)

malay-brunei (ms-BN)

malay-bn (ms-BN)

malay-singapore (ms-SG)

malay-sg (ms-SG)

malayalam
u
(ml)

maltese (mt)

manipuri (mni)

manx (gv)

maori (mi)

marathi
u
(mr)

masai (mas)

mazanderani (mzn)

meru (mer)

meta (mgo)

mongolian (mn)

monotonicgreek
ul

(el)

morisyen (mfe)

mundang (mua)

muscogee (mus)

nama (naq)

navajo (nv)

nepali (ne)

newari (new)

newzealand
ul

(en-NZ)

ngiemboon (nnh)

ngomba (jgo)

nheengatu (yrl)

nigerianpidgin (pcm)

nko (nqo)

northernfrisian (frr)

northernkurdish
ul

(kmr)

kurmanji
ul

(kmr)

northernkurdish-arab
u
(kmr-Arab)

northernkurdish-arabic
u
(kmr-Arab)

northernluri (lrc)

northernsami
ul

(se)

samin
ul

(se)

northernsotho (nso)

northndebele (nd)

norwegian
ul

(no)

norsk
ul

(no)

In the CLDR, norwegianbokmal (nb) just inherites

from norwegian, so use the latter.

nswissgerman
ul

(de-CH)

nuer (nus)

nyanja (ny)

nyankole (nyn)

nynorsk
ul

(nn)

norwegiannynorsk
ul

(nn)

occitan
ul

(oc)

odia
u
(or)

oldnorse (non)

oromo (om)

ossetic (os)

papiamento (pap)

pashto (ps)

persian
u
(fa)

farsi
u
(fa)

phoenician (phn)

13

piedmontese
ul

(pms)

polish
ul

(pl)

portuguese
ul

(pt)

brazilian
ul

(pt-BR)

brazilianportuguese
ul

(pt-BR)

portuguese-brazil
ul

(pt-BR)

portuguese-br
ul

(pt-BR)

europeanportuguese
ul

(pt-PT)

portuguese-portugal
ul

(pt-PT)

portuguese-pt
ul

(pt-PT)

prussian (prg)

punjabi
u
(pa)

punjabi-arabic (pa-Arab)

punjabi-arab (pa-Arab)

punjabi-gurmukhi
u
(pa-Guru)

punjabi-guru
u
(pa-Guru)

quechua (qu)

rajasthani (raj)

romanian
ul

(ro)

moldavian
ul

(ro-MD)

romanian-moldova
ul

(ro-MD)

romanian-md
ul

(ro-MD)

romansh
ul

(rm)

rombo (rof)

rundi (rn)

russian
ul

(ru)

rwa (rwk)

saho (ssy)

sakha (sah)

samaritan (smp)

samburu (saq)

sango (sg)

sangu (sbp)

sanskrit (sa)

sanskrit-bangla (sa-Beng)

sanskrit-beng (sa-Beng)

sanskrit-devanagari (sa-Deva)

sanskrit-deva (sa-Deva)

sanskrit-gujarati (sa-Gujr)

sanskrit-gujr (sa-Gujr)

sanskrit-kannada (sa-Knda)

sanskrit-knda (sa-Knda)

sanskrit-malayalam (sa-Mlym)

sanskrit-mlym (sa-Mlym)

sanskrit-telugu (sa-Telu)

sanskrit-telu (sa-Telu)

santali (sat)

saraiki (skr)

sardinian (sc)

scottishgaelic
ul

(gd)

sena (seh)

serbian
ul

(sr)

Note the ldf names differ. See note above.

serbian-cyrillic
ul

(sr-Cyrl)

serbian-cyrl
ul

(sr-Cyrl)

serbian-cyrillic-

bosniaherzegovina
ul

(sr-Cyrl-BA)

serbian-cyrl-ba
ul

(sr-Cyrl-BA)

serbian-cyrillic-kosovo
ul

(sr-Cyrl-XK)

serbian-cyrl-xk
ul

(sr-Cyrl-XK)

serbian-cyrillic-montenegro
ul

(sr-Cyrl-ME)

serbian-cyrl-me
ul

(sr-Cyrl-ME)

serbian-latin
ul

(sr-Latn)

serbian-latn
ul

(sr-Latn)

serbian-latin-

bosniaherzegovina
ul

(sr-Latn-BA)

serbian-latn-ba
ul

(sr-Latn-BA)

serbian-latin-kosovo
ul

(sr-Latn-XK)

serbian-latn-xk
ul

(sr-Latn-XK)

serbian-latin-montenegro
ul

(sr-Latn-ME)

serbian-latn-me
ul

(sr-Latn-ME)

serbian-ijekavsk
ul

(sr-ijekavsk)

serbian-latn-ijekavsk
ul

(sr-Latn-ijekavsk)

shambala (ksb)

shona (sn)

sichuanyi (ii)

sicilian (scn)

silesian (szl)

sindhi (sd)

sindhi-devanagari (sd-deva)

sindhi-deva (sd-deva)

sindhi-khojki (sd-khoj)

sindhi-khoj (sd-khoj)

sindhi-khudawadi (sd-sind)

sindhi-sind (sd-sind)

sinhala
u
(si)

sinteromani (rmo)

slovak
ul

(sk)

slovenian
ul

(sl)

slovene
ul

(sl)

soga (xog)

somali (so)

southernaltai (alt)

southernsotho (st)

southndebele (nr)

spanish
ul

(es)

mexican
ul

(es-MX)

mexicanspanish
ul

(es-MX)

spanish-mexico
ul

(es-MX)

spanish-mx
ul

(es-MX)

standardmoroccantamazight (zgh)

sundanese (su)

swahili (sw)

swati (ss)

swedish
ul

(sv)

swissgerman (gsw)

Different from swisshighgerman (de-CH), which is

German as spoken in Switzerland.

syriac (syr)

tachelhit (shi)

tachelhit-latin (shi-Latn)

tachelhit-latn (shi-Latn)

tachelhit-tifinagh (shi-Tfng)

tachelhit-tfng (shi-Tfng)

tainua (tdd)

taita (dav)

tajik (tg)

tamil
u
(ta)

tangut (txg)

taroko (trv)

tasawaq (twq)

tatar (tt)

telugu
u
(te)

teso (teo)

thai
ul

(th)

tibetan
u
(bo)

14

tigre (tig)

tigrinya (ti)

tokpisin (tpi)

tongan (to)

tsonga (ts)

tswana (tn)

turkish
ul

(tr)

turkmen
ul

(tk)

tyap (kcg)

ukenglish
ul

(en-GB)

ukrainian
ul

(uk)

uppersorbian
ul

(hsb)

urdu
u
(ur)

usenglish
ul

(en-US)

usorbian
ul

(hsb)

uyghur
u
(ug)

uzbek (uz)

uzbek-arabic (uz-Arab)

uzbek-arab (uz-Arab)

uzbek-cyrillic (uz-Cyrl)

uzbek-cyrl (uz-Cyrl)

uzbek-latin (uz-Latn)

uzbek-latn (uz-Latn)

vai (vai)

vai-latin (vai-Latn)

vai-latn (vai-Latn)

vai-vai (vai-Vaii)

vai-vaii (vai-Vaii)

venda (ve)

vietnamese
ul

(vi)

volapuk (vo)

vunjo (vun)

walser (wae)

waray (war)

welsh
ul

(cy)

westernfrisian (fy)

wolaytta (wal)

wolof (wo)

xhosa (xh)

yangben (yav)

yiddish (yi)

yoruba (yo)

zarma (dje)

zulu (zu)

1.8. Fonts in Unicode engines

NOTE For pdflatex and the standard fontencmechanism, refer to the LATEX manuals or The

LATEX Companion, vol. I, ch. 9, and vol. II, ch. 10.

3.15 Babel has native support for Unicode fonts (OpenType and TrueType) in luatex and

xetex by means of a high level interface on top of fontspec. This makes it easier to handle

a wide range of languages and scripts, and simplifies the process of typesetting

multilingual documents. As described below, with luatex the font can be switched

automatically based on the script without explicit markup.

There is no need to load fontspec explicitly – babel does it for you with the first

\babelfont. (See also the package combofont for a complementary approach.)

\babelfont[〈language-list〉]{〈font-family〉}[〈font-options〉]{〈font-name〉}

The main purpose of \babelfont is to define at once the fonts required by the different

languages, with their corresponding language systems (script and language). So, if you

load, say, 4 languages, \babelfont{rm}{FreeSerif} defines 4 fonts (with their variants, of

course), which are switched with the language by babel. It is a tool to make things easier

and transparent to the user.

Here font-family is rm, sf or tt (or newly defined ones, as explained below), and

font-name is the same as in fontspec and the like.

If no language is given, then it is considered the default font for the family. On the other

hand, if there is one or more languages in the optional argument, the font will be assigned

to all of them, overriding the default one. Alternatively, you may set a font for a script – just

precede its name (lowercase) with a star (e.g., *devanagari).

With the optional argument, the font is not yet loaded, but just predeclared. In other

words, font loading is lazy, which means you may define as many fonts as you want ‘just in

case’, because if the language is never selected, the corresponding \babelfont declaration

is just ignored.

Babel takes care of the font language and the font script when languages are selected (as

well as the writing direction). In other words, there is usually no need to set the Language

and the Script explicitly; in fact, it’s even discouraged. In most cases, you will not need

font-options, which is the same as in fontspec, but you may add further key/value pairs if

necessary.

15

\babelfont can be used to implicitly define a new font family. Just write its name instead

of rm, sf or tt. This is the preferred way to select fonts in addition to the three basic

families.

24.14⊕ With luatex, Babel selects the renderer in the following way:

• The default renderer in alphabetic scripts, so that the tools provided by luaotfload for

ligatures, kerning and the like, which are essential typographical features in these

scripts, are directly available: Armenian, Coptic, Cyrillic, Georgian, Glagolitic, Gothic,

Greek, Latin, Old Church Slavonic Cyrillic.

• Harfbuzz in the rest of scripts, particularly complex scripts with heavy contextual

analysis (like Arabic and Devanagari).

You can still select a different renderer with the fontspec key Renderer. Note also the same

font can be loaded with different renderers. See Comparing the modes for further info.

NOTE There is a list of fonts in Which method for which language. If you know the

codepoint of a character in the script you need, you can find fonts containing it with

albatross (requires Java) or with something like fc-list :charset=1033C family in

the commands line (in this case, a Gothic character, the script required by the gothic

language).

NOTE As babel sets the font language system, the following setup is redundant, so avoid it

and use only the first line:

\babelfont{rm}{DejaVu Serif}

\babelfont[armenian]{rm}[Script=Armenian, Language=Armenian]{DejaVu Serif}

EXAMPLE Usage in most cases is very simple. Let us assume you are setting up a document

in Swedish, with some words in Hebrew, with a font suited for both languages. Here the

option bidi=default activates a simple (or, rather, simplistic) bidirectional mode.

luatex/xetex
\documentclass{article}

\usepackage[swedish, bidi=default]{babel}

\babelprovide[import]{hebrew}

\babelfont{rm}{FreeSerif}

\begin{document}

Svenska \foreignlanguage{hebrew}{ תירְִבעִ } svenska.

\end{document}

If on the other hand you have to resort to different fonts, you can replace the red line

above with, say:

luatex/xetex
\babelfont{rm}{Iwona}

\babelfont[hebrew]{rm}{FreeSerif}

EXAMPLE Thanks to this high level interface to fontenc, the roman fonts for all secondary

languages in the Cyrillic and Greek scripts can be set at once with the following single

line:

luatex/xetex
\babelfont[*cyrillic, *greek]{rm}{NewComputerModern10}

And if you need, say, Arabic and Devanagari:

16

https://latex3.github.io/babel/news/whats-new-in-babel-24.14.html
https://github.com/latex3/luaotfload/wiki/Comparing-the-modes
https://latex3.github.io/babel/guides/which-method-for-which-language.html

\babelfont[*arabic, *devanagari]{rm}{FreeSerif}

Babel does the rest for you, including setting the font script and language.

EXAMPLE Since each locale is a separate ‘language’, they can be assigned different fonts.

In this example, we set Simplified and Tradicional Chinese:

\babelfont[chinese-simplified]{rm}{Noto Serif CJK SC}

\babelfont[chinese-simplified]{sf}{Noto Sans CJK SC}

\babelfont[chinese-traditional]{rm}{Noto Serif CJK TC}

\babelfont[chinese-traditional]{sf}{Noto Sans CJK TC}

EXAMPLE Here is how to declare a new family:

luatex/xetex
\babelfont{kai}{FandolKai}

Now, \kaifamily and \kaidefault, as well as \textkai are at your disposal.

NOTE You may load fontspec explicitly. For example:

luatex/xetex
\usepackage{fontspec}

\newfontscript{Devanagari}{deva}

\babelfont[hindi]{rm}{Shobhika}

This makes sure the OpenType script for Devanagari is deva and not dev2, in case you

need it.

NOTE \fontspec is not touched at all, only the preset font families (rm, sf, tt, and the

like). If a language is switched when an ad hoc font is active, or you select the font with

this command, neither the script nor the language is passed. You must add them by

hand. This is by design, for several reasons —for example, each font has its own set of

features and a generic setting for several of them can be problematic, and also

preserving a “lower-level” font selection is useful.

NOTE Directionality is a property affecting margins, indentation, column order, etc., not

just text. Therefore, it is under the direct control of the language, which applies both the

script and the direction to the text. As a consequence, there is no need to set Script

when declaring a font with \babelfont (nor Language). In fact, it is even discouraged.

NOTE The keys Language and Script just pass these values to the font, and do not set the

script for the language (and therefore the writing direction). In other words, the ini file

or \babelprovide provides default values for \babelfont if omitted, but the opposite is

not true. See the note above for the reasons of this behavior.

NOTE \babelfont is a high level interface to fontspec, and therefore in xetex you can

apply Mappings. For example, there is a set of transliterations for Brahmic scripts by

David M. Jones. After installing them in you distribution, just set the map as you would

do with fontspec.

WARNING Using \setxxxxfont and \babelfont at the same time is discouraged, but very

often works as expected. However, be aware with \setxxxxfont the language system

will not be set by babel and should be set with fontspec if necessary.

TROUBLESHOOTING Package fontspec Info: Language ’<lang>’ not explicitly supported

within font ’’ with script ’<script>’..

This is not and error. This info is shown by fontspec, not by babel. If everything is okay

in your document (and almost always it is), the best thing you can do is just to ignore it

altogether.

17

https://github.com/davidmjones/brahmic-maps

In some forums you can find the advice to set, more or less mechanically,

Language=Default. Do not follow it, because font features for the language will not be

applied, which can be relevant for many languages, like Urdu and Turkish. Set the

Language explicitly only if there is a reason to do it. If you really want to conceal this

message, use instead:

\PassOptionsToPackage{silent}{fontspec}

TROUBLESHOOTING Package babel Info: The following fonts are not babel standard

families.

This is not an error. babel assumes that if you are using \babelfont for a family, very

likely you want to define the rest of them. If you don’t, you can find some

inconsistencies between families. This checking is done at the beginning of the

document, at a point where we cannot know which families will be used.

Actually, there is no real need to use \babelfont in a monolingual document, if you set

the language system in \setmainfont (or not, depending on what you want).

As the message explains, there is nothing intrinsically wrong with not defining all the

families. In fact, there is nothing intrinsically wrong with not using \babelfont at all.

But you must be aware that this may lead to some problems.

1.9. Basic language selectors

This section describes the commands to be used in the document to switch the language in

multilingual documents. In most cases, only the two basic macros \selectlanguage and

\foreignlanguage are necessary. The environments otherlanguage, otherlanguage* are

auxiliary, and described in the next section.

The main language is selected automatically when the document environment begins.

\selectlanguage{〈language〉}
\begin{selectlanguage}{〈language〉} ... \end{selectlanguage}

When a user wants to switch from one language to another he can do so using the macro

\selectlanguage. It is meant for blocks of texts, and therefore should be used mainly in

vertical mode, although it also works in horizontal mode.

\selectlanguage{german}

This command can be used as environment, too, in case there are relatively short texts

and you do not want to reset the language with a hardcode value.

NOTE Bear in mind \selectlanguage can be automatically executed, in some cases, in the

auxiliary files, at heads and foots, and after the environment otherlanguage*.

WARNING If used inside braces or a group there might be some non-local changes, as it

would be roughly equivalent to:

\bgroup

\selectlanguage{<inner-language>}

...

\egroup

\selectlanguage{<outer-language>}

If you want a change which is really local, you must enclose this code with an additional

grouping level. The same applies to the environment version.

WARNING There are a couple of issues related to the way the language information is

written to the auxiliary files:

18

• \selectlanguage should not be used inside some boxed environments (like floats or

minipage) to switch the language if you need the information written to the aux be

correctly synchronized. This rarely happens, but if it were the case, you must use the

environment version or otherlanguage instead.

• In addition, this macro inserts a \write in vertical mode, which may break the

vertical spacing in some cases (for example, between lists or at the beginning of a

table cell). 3.64⊕ The behavior can be adjusted with

\babeladjust{select.write=〈mode〉}, where 〈mode〉 is shift (which shifts the

skips down and adds a \penalty); keep (the default – with it the \write and the

skips are kept in the order they are written), and omit (which may seem a too drastic

solution, because nothing is written, but more often than not this command is

applied to more or less shorts texts with no sectioning or similar commands, and

therefore no language synchronization is necessary). In a table cell, a \leavevmode

just before the selector may be enough.

\foreignlanguage[〈option-list〉]{〈language〉}{〈text〉}

It takes two mandatory arguments; the second argument is a phrase to be typeset

according to the rules of the language named in its first one.

This command (1) only switches the extra definitions and the hyphenation rules for the

language, not the names and dates, (2) does not send information about the language to

auxiliary files (i.e., the surrounding language is still in force), and (3) it works even if the

language has not been set as package option (but in such a case it only sets the

hyphenation patterns and a warning is shown). With the bidi option, it also enters in

horizontal mode (this is not done always for backwards compatibility), and since it is

meant for phrases only the text direction (and not the paragraph one) is set.

3.44⊕ As already said, captions and dates are not switched. However, with the optional

argument you can switch them, too. So, you can write:

\foreignlanguage[date]{polish}{\today}

In addition, captions can be switched with captions (or both, of course, with date,

captions). Until 3.43 you had to write something like {\selectlanguage{..} ..}, which

was not always the most convenient way.

NOTE \bibitem is out of sync with \selectlanguage in the aux file. The reason is

\bibitem uses \immediate (and others, in fact), while \selectlanguage doesn’t. There

is a similar issue with floats, too. There is no known workaround, but it’s not usually a

real issue.

1.10. Auxiliary language selectors

\begin{otherlanguage}{〈language〉} ... \end{otherlanguage}

Same as selectlanguage as environment, except spaces after the \begin and \end

commands are ignored. (Very likely, and because of the limitations of many old editors

with bidi text, the idea was \end{otherlanguage} had to be a line by itself.) The warning

above about the internal \write also applies here. The current mode (vertical or

horizontal) also remains unchanged.

\begin{otherlanguage*}[〈option-list〉]{〈language〉} ... \end{otherlanguage*}

Same as \foreignlanguage but as environment. Spaces are not ignored.

It was originally devised for intermixing left-to-right typesetting with right-to-left

typesetting in engines not supporting a change in the writing direction inside a line.

However, by default it never complied with the documented behavior and it is just a

version as environment of \foreignlanguage, except when the package option bidi is set

– in this case, \foreignlanguage emits a \leavevmode, while otherlanguage* does not.

19

https://latex3.github.io/babel/news/whats-new-in-babel-3.64.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html

Like \foreignlanguage it is a text command, and therefore it doesn’t change the

paragraph direction.

EXAMPLE Here is a document putting in practice some of the techniques described, which

shows how to deal neatly with complex multilingual documents in luatex and xetex,

with the help of logical markup. You are writing a book on Indic literature with many

extracts in several languages, which fits in the category of ‘mostly monolingual’.

Loading of locales and fonts is lazy, which greatly simplifies the preamble.

\documentclass{article}

\usepackage[english]{babel}

\babelfont[*devanagari]{rm}{FreeSans}

\newenvironment{excerpt}[1]

{\begin{quote}\begin{otherlanguage*}{#1}}

{\end{otherlanguage*}\end{quote}}

\begin{document}

\section{Sanskrit literature}

Here is an excerpt:

\begin{excerpt}{sanskrit}

ससंकृ्तम्
\end{excerpt}

\section{Hindi literature}

Here is an excerpt:

\begin{excerpt}{hindi}

िहनद्ी
\end{excerpt}

\section{Marathi literature}

Here is an excerpt:

\begin{excerpt}{marathi}

मराठी
\end{excerpt}

\section{Nepali literature}

Here is an excerpt:

\begin{excerpt}{nepali}

नेपाली
\end{excerpt}

\section{Rajasthani literature}

Here is an excerpt:

\begin{excerpt}{rajasthani}

ससंकृ्तम्
\end{excerpt}

\end{document}

1.11. Plain

In e-Plain and pdf-Plain, load languages styles with \input and then use \begindocument

(the latter is defined by babel):

20

\input estonian.sty

\begindocument

WARNING Not all languages provide a sty file and some of them are not compatible with

those formats. Please, refer to Using babel with Plain for further details.

2. More on language loading and selection

2.1. A couple of tools

\babeltags{〈tag1〉 = 〈language1〉, 〈tag2〉 = 〈language2〉, …}

3.9i In multilingual documents with many language-switches the commands above can

be cumbersome. With this tool shorter names can be defined. It adds nothing really new –

it is just syntactical sugar.

It defines \text〈tag1〉{〈text〉} to be \foreignlanguage{〈language1〉}{〈text〉}, and
\begin{〈tag1〉} to be \begin{otherlanguage*}{〈language1〉}, and so on. Note \〈tag1〉 is
also allowed, but remember to set it locally inside a group.

WARNING There is a clear drawback to this feature, namely, the ‘prefix’ \text... is

heavily overloaded in LATEX and conflicts with existing macros may arise (\textlatin,

\textbar, \textit, \textcolor and many others). The same applies to environments,

because arabic conflicts with \arabic. Furthermore, and because of this overloading,

detecting the language of a chunk of text by external tools can become unfeasible (is

\textga the locale for the African language Gã or something else?). Except if there is a

reason for this ‘syntactical sugar’, the best option is to stick to the default selectors or

even to define your own alternatives.

EXAMPLE With

\babeltags{de = german}

you can write

text \textde{German text} text

and

text

\begin{de}

German text

\end{de}

text

NOTE Something like \babeltags{finnish = finnish} is legitimate – it defines

\textfinnish and \finnish (and, of course, \begin{finnish}).

\babelensure[include=〈commands〉,exclude=〈commands〉,fontenc=〈encoding〉]{〈language〉}

3.9i Except in a few languages, like russian, captions and dates are just strings, and do

not switch the language. That means you should set it explicitly if you want to use them, or

hyphenation (and in some cases the text itself) will be wrong. For example:

\foreignlanguage{russian}{text \foreignlanguage{polish}{\seename} text}

21

https://latex3.github.io/babel/guides/using-babel-with-plain.html

Of course, TEX can do it for you. To avoid switching the language all the while,

\babelensure redefines the captions for a given language to wrap them with a selector:

\babelensure{polish}

By default only the basic captions and \today are redefined, but you can add further

macros with the key include in the optional argument (without commas). Macros not to be

modified are listed in exclude. You can also enforce a font encoding with the option

fontenc (with it, encoded strings may not work as expected). A couple of examples:

\babelensure[include=\Today]{spanish}

\babelensure[fontenc=T5]{vietnamese}

They are activated when the language is selected (at the afterextras event), and it

makes some assumptions which could not be fulfilled in some languages. Note also you

should include only macros defined by the language, not global macros (e.g., \TeX of \dag).

With ini files (see below), captions are ensured by default.

2.2. Accessing language info

\localename

\mainlocalename

\languagename

24.10⊕ The control sequence \localename contains the name of the current locale. This

is now the recommended way to retrieve the current language. In addtion,

\mainlocalename contains the main language.

\languagename is still used internally, but it is now discouraged at the user level.

WARNING Due to a bug, which led to some internal inconsistencies in catcodes,

\languagename should not be used to test which is the current language. Rely on

\localename or, if you still need \languagename for some reason, on iflang, by Heiko

Oberdiek.

\iflanguage{〈language〉}{〈true〉}{〈false〉}

Here “language” is used in the TEX sense, as a set of hyphenation patterns, and not as its

babel name. The first argument is the name of a language.

\localeinfo * {〈field〉}

3.38⊕ If an ini file has been loaded for the current language, you may access the

information stored in it. Note with the ‘classical’ ldf files the corresponding ini ones are

also loaded, but only some basic data required for fonts, casing and a few more.

This macro is fully expandable, but raises an error if the info doesn’t exist.

3.75⊕ Sometimes, it comes in handy to be able to use \localeinfo in a quite fully

expandable way even if something went wrong (for example, the locale currently active is

undefined). For these cases, localeinfo* just returns an empty string instead of raising an

error.

The available fields are:

name.english as provided by the Unicode CLDR.

tag.ini is the tag of the ini file (the way this file is identified in its name).

tag.bcp47 is the full BCP 47 tag. This is the value to be used for the ‘real’ provided tag

(babelmay fill other fields if they are considered necessary).

language.tag.bcp47 is the BCP 47 language tag.

tag.opentype is the tag used by OpenType (usually, but not always, the same as BCP 47). It

can be useful when customizing fonts with luaotfload.

22

https://latex3.github.io/babel/news/whats-new-in-babel-24.10.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.38.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html

script.name , as provided by the Unicode CLDR.

script.tag.bcp47 is the BCP 47 tag of the script used by this locale. This is a required

field for the fonts to be correctly set up, and therefore it should always be defined.

script.tag.opentype is the tag used by OpenType (usually, but not always, the same as

BCP 47). It can be useful when customizing fonts with luaotfload.

region.tag.bcp47 is the BCP 47 tag of the region or territory. Defined only if the locale

loaded actually contains it (e.g., es-MX does, but es doesn’t), which is how locales

behave in the CLDR. 3.75⊕

variant.tag.bcp47 is the BCP 47 tag of the variant (in the BCP 47 sense, like 1901 for

German). 3.75⊕

extension.〈s〉.tag.bcp47 is the BCP 47 value of the extension whose singleton is 〈s〉
(currently the recognized singletons are x, t and u). The internal syntax can be

somewhat complex, and this feature is still somewhat tentative. An example is

classicallatin which sets extension.x.tag.bcp47 to classic. 3.75⊕

NOTE Currently, x is used for two separate functions, namely, identifying a babel locale

without a BCP 47 tag and setting an alternative set of rules for casing.

NOTE Bear in mind that babel, following the CLDR, may leave the region unset, which

means \getlocaleproperty*, described below, is the preferred command, so that the

existence of a field can be checked before. This also means building a string with the

language and the region with something like \localeinfo*{language.tab.bcp47}-

\localeinfo*{region.tab.bcp47} is not usually a good idea (because of the hyphen).

WARNING 3.46⊕ As of version 3.46 tag.bcp47 returns the full BCP 47 tag. Formerly it

returned just the language subtag, which was clearly counterintuitive.

\getlocaleproperty * {〈macro〉}{〈locale〉}{〈property〉}

3.42⊕ The value of any locale property as set by the ini files (or added/modified with

\babelprovide) can be retrieved and stored in a macro with this command. For example,

after:

\getlocaleproperty\hechap{hebrew}{captions/chapter}

the macro \hechap will contain the string קרפ .

If the key does not exist, the macro is set to \relax and an error is raised. 3.47⊕ With the

starred version no error is raised, so that you can take your own actions with undefined

properties.

\localeid

Each language in the babel sense has its own unique numeric identifier, which can be

retrieved with \localeid.

The \localeid is not the same as the \language identifier, which refers to a set of

hyphenation patterns (which, in turn, is just a component of the line breaking algorithm

described in the next section). The data about preloaded patterns are store in an internal

macro named \bbl@languages (see the code for further details), but note several locales

may share a single \language, so they are separated concepts. In luatex, the \localeid is

saved in each node (when it makes sense) as an attribute, too.

\ShowLocaleProperties{〈language〉}

3.98⊕ Prints to the log file all the loaded key/value pairs from the ini locale file for

〈language〉.

\LocaleForEach{〈code〉}

Babel remembers which ini files have been loaded. There is a loop named

\LocaleForEach to traverse the list, where #1 is the name of the current item, so that

\LocaleForEach{\message{ **#1** }} just shows the loaded ini’s.

23

https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.75.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.46.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.42.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.47.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.98.html

2.3. Package options

3.9a These package options are processed before language options, so that they are taken

into account irrespective of their order. The first three options have been available in

previous versions.

KeepShorthandsActive

Tells babel not to deactivate shorthands after loading a language file, so that they are also

available in the preamble.

headfoot=〈language〉

By default, headlines and footlines are not touched (only marks), and if they contain

language-dependent macros (which is not usual) there may be unexpected results. With

this option you may set the language in heads and feet. An alternative is to set the language

explicitly when heads and feet are redefined.

noconfigs

Global and language default config files are not loaded, so you can make sure your

document is not spoilt by an unexpected .cfg file. However, if the key config is set, this

file is loaded.

config=〈file〉

Load 〈file〉.cfg instead of the default config file bblopts.cfg (forced even with

noconfigs).

showlanguages

Prints to the log the list of languages loaded when the format was created: number

(remember dialects can share it), name, hyphenation file and exceptions file.

silent

3.9l No warnings and no infos are written to the log file.1

hyphenmap=off | first | select | other | other*

3.9g Sets the behavior of case mapping for hyphenation, provided the language defines

it.2 It can take the following values:

off deactivates this feature and no case mapping is applied;

first sets it at the first switching commands in the current or parent scope (typically,

when the aux file is first read and at \begin{document}, but also the first

\selectlanguage in the preamble), and it’s the default if a single language option has

been stated. If a language option is repeated (e.g., malay, malay), it counts as several

ones, even if there is only a language.

select sets it only at \selectlanguage;

other also sets it at otherlanguage;

other* also sets it at otherlanguage* as well as in heads and feet (if the option headfoot

is used) and in auxiliary files (i.e., at \select@language), and it’s the default if several

language options have been stated. The option first can be regarded as an optimized

version of other* for monolingual documents.3

1You can use alternatively the package silence.
2Turned off in plain.
3Providing foreign is pointless, because the case mapping applied is that at the end of the paragraph, but if

either luatex or xetex change this behavior it might be added. On the other hand, other is provided even if I [JBL]

think it isn’t really useful, but who knows.

24

bidi=default | basic | basic-r | bidi-l | bidi-r

3.14 Selects the bidi algorithm to be used in luatex and xetex. See sec. 5.10.

layout=

3.16 Selects which layout elements are adapted in bidi documents. See sec. 5.10.

provide=* | 〈option-list〉

3.49⊕ An alternative to \babelprovide for languages passed as options. See section 2.5,

which describes also the variants provide+= and provide*=.

main=〈language〉

Forces the main language, but this option should not be used except if there a need to do

it. If the language is not given as such as package or global option, it is added to the list of

requested languages. For example:

\documentclass{article}

\usepackage[main=english,dutch]{babel}

Some classes load babel with a hardcoded language option. Sometimes, the main language

can be overridden with something like that before \documentclass:

\PassOptionsToPackage{main=english}{babel}

2.4. The base option

With this package option babel just loads some basic macros (mainly the selectors), defines

\AfterBabelLanguage and exits. It also selects the hyphenation patterns for the last

language passed as option (by its name in language.dat). There are two main uses: classes

and packages, and as a last resort in case there are, for some reason, incompatible

languages. It can be used if you just want to select the hyphenation patterns of a single

language, too.

\AfterBabelLanguage{〈option-name〉}{〈code〉}

This command is currently the only one provided by base. Executes 〈code〉 when the file

loaded by the corresponding package option is finished (at \ldf@finish). The setting is

global. So

\AfterBabelLanguage{french}{...}

does ... at the end of french.ldf. It can be used in ldf files, too, but in such a case the

code is executed only if 〈option-name〉 is the same as \CurrentOption (which could not be

the same as the option name as set in \usepackage!).

EXAMPLE Consider two languages foo and bar defining the same \macro with

\newcommand. An error is raised if you attempt to load both. Here is a way to overcome

this problem:

\usepackage[base]{babel}

\AfterBabelLanguage{foo}{%

\let\macroFoo\macro

\let\macro\relax}

\usepackage[foo,bar]{babel}

25

https://latex3.github.io/babel/news/whats-new-in-babel-3.49.html

NOTE An alternative method to execute some code just after an ldf file is loaded is with

\AddToHook and the hook file/〈language〉.ldf/after. You can also execute some code

before with file/〈language〉.ldf/before.

WARNING Currently this option is not compatible with languages loaded on the fly.

2.5. provide and \babelprovide – ini files

An alternative approach to define a language (or, more precisely, a locale) is by means of an

ini file. Currently babel provides about 380 of these files containing the basic data

required for a locale, covering about 300 languages and 40 scripts, plus basic templates for

about 400 locales.

ini files are not meant only for babel, and they has been devised as a resource for other

packages. To ease interoperability between TEX and other systems, they are identified with

the BCP 47 codes as preferred by the Unicode Common Locale Data Repository, which was

used as source for most of the data provided by these files, where available.

Most of them set the date, and many also the captions (Unicode and LICR). They will be

evolving with the time to add more features (something to keep in mind if backward

compatibility is important). The following section shows how to make use of them by

means of \babelprovide.

Not all languages in the CLDR are complete, and therefore neither are the ini files. A few

languages may show a warning about the current lack of suitability of some features.

EXAMPLE There is an example of how to use an ini template file here, for Phoenician

(although currently this locale is bundled with babel).

NOTE The ini files just define and set some parameters, but the corresponding behavior

is not always implemented. Also, there are some limitations in the engines. A few

remarks follow (which could no longer be valid when you read this manual, if the

packages involved have been updated).

Arabic Math and graphical elements like picture are complex and requires some

additional fine tuning. In xetex babel resorts to the bidi package, which seems to

work.

Southeast scripts Thai works in both luatex and xetex, but line breaking differs (rules

are hard-coded in xetex, but they can be modified in luatex). Lao seems to work, too,

but there are no patterns for the latter in luatex. Some quick patterns can help, with

something similar to:

\babelprovide[import, hyphenrules=+]{lao}

\babelpatterns[lao]{1ດ 1ມ 1ອ 1ງ 1ກ 1າ} % Random

East Asia scripts Settings for either Simplified of Traditional (Chinese) should work

out of the box, with basic line breaking with any renderer. Although for a few words

and shorts texts the ini files should be fine, CJK texts are best set with a dedicated

framework (CJK, luatexja, kotex, CTeX, etc.). This is what the class ltjbook does with

luatex, which can be used in conjunction with the ldf for japanese, because the

following piece of code loads luatexja:

\documentclass[japanese]{ltjbook}

\usepackage{babel}

Latin, Greek, Cyrillic Combining chars with the default luatex font renderer might be

wrong; on the other hand, with the Harfbuzz renderer diacritics are stacked

correctly, but many hyphenations points are discarded (this bug is related to

kerning, so it depends on the font). With xetex both combining characters and

hyphenation work as expected (not quite, but in most cases it works; the problem

here are font clusters).

26

https://github.com/latex3/babel/issues/176#issuecomment-1080846575

NOTE Wikipedia defines a locale as follows: “In computing, a locale is a set of parameters

that defines the user’s language, region and any special variant preferences that the

user wants to see in their user interface. Usually a locale identifier consists of at least a

language code and a country/region code.” Babel is moving gradually from the old and

fuzzy concept of language to the more modern of locale. Note each locale is by itself a

separate “language”, which explains why there are so many files. This is on purpose, so

that possible variants can be created and/or redefined easily.

2.6. Selection based on BCP 47 tags

3.43⊕ The recommended way to select languages is that described at the beginning of this

document. However, BCP 47 tags are becoming customary, particularly in documents (or

parts of documents) generated by external sources, and therefore babel will provide a set

of tools to select the locales in different situations, adapted to the particular needs of each

case. Currently, babel provides autoloading of locales as described in this section. In these

contexts autoloading is particularly important because we may not know beforehand

which languages will be requested.

It must be activated explicitly, because it is primarily meant for special tasks. Mapping

from BCP 47 codes to locale names is not hardcoded in babel. Instead the data is taken from

the ini files, which means currently about 350 tags are already recognized. Babel performs

a simple lookup in the following way: fr-Latn-FR→ fr-Latn→ fr-FR→ fr. Languages

with the same resolved name are considered the same. Case is normalized before, so that

fr-latn-fr→ fr-Latn-FR. If a tag and a name overlap, the tag takes precedence.

Here is a minimal example:

\documentclass{article}

\usepackage[danish]{babel}

\babeladjust{

autoload.bcp47 = on

}

\begin{document}

Chapter in Danish: \chaptername.

\selectlanguage{de-AT}

\localedate{2020}{1}{30}

\end{document}

Currently the locales loaded are based on the ini files and decoupled from the main ldf

files. This is by design, to ensure code generated externally produces the same result

regardless of the languages requested in the document, but an option to use the ldf

instead will be added in a future release, because both options make sense depending on

the particular needs of each document (there will be some restrictions, however).

The behavior is adjusted with \babeladjust with the following parameters:

autoload.bcp47 with values on and off.

autoload.bcp47.options, which are passed to \babelprovide; 24.14⊕ import by

default (features defined in the corresponding babel-...tex file might not be

available), but you can set it to another value (even empty).

autoload.bcp47.prefix. Although the public name used in selectors is the tag, the

internal name will be different and generated by prepending a prefix, which by default

is bcp47-. You may change it with this key.

27

https://latex3.github.io/babel/news/whats-new-in-babel-3.43.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.14.html

3.46⊕ If an ldf file has been loaded, you can enable the corresponding language tags as

selector names with:

\babeladjust{ bcp47.toname = on }

(You can deactivate it with off.) So, if dutch is one of the package (or class) options, you

can write \selectlanguage{nl}. Note the language name does not change (in this

example is still dutch), but you can get it with \localeinfo or \getlocaleproperty. It

must be turned on explicitly for similar reasons to those explained above.

3. Tailoring, customizing and modifying a language

Modifying the behavior of a language (say, the chapter “caption”) is sometimes necessary.

Several language definition files use their own methods to set options. For example,

french uses \frenchsetup,magyar (1.5) uses \magyarOptions; modifiers provided by

spanish have no attribute counterparts. Macros setting options are also used (e.g.,

\ProsodicMarksOn in latin).

This section describes the general tools provided by the babel core.

3.1. Captions

This is perhaps the most frequent change, so a specific macro is provided.

\setlocalecaption{〈language-name〉}{〈caption-name〉}{〈string〉}

3.51⊕ Here caption-name is the name as string without the trailing name. An example,

which also shows caption names are often a stylistic choice, is:

\setlocalecaption{english}{contents}{Table of Contents}

This works not only with existing caption names, because it also serves to define new ones

by setting the caption-name to the name of your choice (name will be postpended). Captions

so defined or redefined behave with the ‘new way’ described in the following note.

Note the string should not contain a language selector or changes in the text direction,

which is done by babel when necessary. With arabic, all you need is:

\setlocalecaption{arabic}{part}{ مسقلا }

NOTE There are a few alternative methods:

• With data import’ed from ini files, you can modify the values of specific keys when

loaded, like:

\babelprovide[import, captions/listtable = Lista de tablas]{spanish}

(In this particular case, instead of the captions group you may need to modify the

captions.licr one.)

• The low-level ‘old way’ to redefine a caption, still valid for many languages but

discouraged in general, is the following:

\addto\captionsenglish{%

\renewcommand\contentsname{Foo}%

}

As of 3.15, there is no need to hide spaces with % (babel removes them), but it is

advisable to do so. This redefinition is not activated until the language is selected.

28

https://latex3.github.io/babel/news/whats-new-in-babel-3.46.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.51.html

• The ‘new way’, which is found in bulgarian, azerbaijani, spanish, french,

turkish, icelandic, vietnamese and a few more, as well as in languages created

with \babelprovide and its key import, or with the package option provide=, is:

\renewcommand\spanishchaptername{Foo}

This redefinition is immediate.

NOTE Do not redefine a caption in the following way:

\AtBeginDocument{\renewcommand\contentsname{Foo}}

The changes may be discarded with a language selector, and the original value restored.

Macros to be run when a language is selected can be added to \extras〈language〉:

\addto\extrasrussian{\mymacro}

There is a counterpart for code to be run when a language is unselected:

\noextras〈language〉.

NOTE These macros (\captions〈language〉, \extras〈language〉) may be redefined, but

must not be used as such – they just pass information to babel, which executes them in

the proper context.

Another way to modify a language loaded as a package or class option is by means of

\babelprovide, described below in depth. So, something like:

\usepackage[danish]{babel}

\babelprovide[hyphenrules=nohyphenation]{danish}

first loads danish.ldf, and then prevents hyphenation for this locale. The rest of the

language definitions are not touched. Without the optional argument it just loads some

additional tools if provided by the ini file, like extra counters.

3.2. Modifiers

3.9c The basic behavior of some languages can be modified when loading babel by means

ofmodifiers. They are set after the language name, and are prefixed with a dot (only when

the language is set as package option – neither global options nor the main key accepts

them). An example is (spaces are not significant and they can be added or removed):4

\usepackage[latin.medieval, spanish.notilde.lcroman, danish]{babel}

Attributes (described below) are considered modifiers, i.e., you can set an attribute by

including it in the list of modifiers.

3.89⊕ Alternatively, modifiers can be set with a separate option, with the keyword

modifiers followed by a dot and the language name (note the language is not selected or

loaded with this option). It is useful to activate some feature when the language is declared

as a class option:

\documentclass[spanish]{report}

\usepackage[modifiers.spanish = notilde.lcroman]{babel}

4No predefined “axis” for modifiers is provided because languages and their scripts have quite different needs.

29

https://latex3.github.io/babel/news/whats-new-in-babel-3.89.html

3.3. Language attributes

\languageattribute{〈language〉}

This is a user-level command, to be used in the preamble of a document (after

\usepackage[...]{babel}), that declares which attributes are to be used for a given

language. It takes two arguments: the first is the name of the language; the second, a (list

of) attribute(s) to be used. Attributes must be set in the preamble and only once – they

cannot be turned on and off. The command checks whether the language is known in this

document and whether the attribute(s) are known for this language.

3.4. Casing

\BabelUppercaseMapping{〈locale-name〉}{〈codepoint〉}{〈output〉}
\BabelLowercaseMapping{〈locale-name〉}{〈codepoint〉}{〈output〉}
\BabelTitlecaseMapping{〈locale-name〉}{〈codepoint〉}{〈output〉}

3.90⊕ These macros are devised as a high level interface for declaring case mappings,

based on the locale name as declared by or with babel. They are the equivalent of

\DeclareUppercaseMapping, \DeclareLowercaseMapping, and

\DeclareTitlecaseMapping (see usrguide.pdf). The purpose is twofold: (1) a user-friendly

way to declare them, because often BCP 47 tags are not known (and sometimes can be

complex); (2) if for some reason the tag changes (e.g., you decide to tag english as en-001

instead of en-US), the new mappings will still be assigned to that language.

EXAMPLE For Classical Latin (no need to know the tag is la-x-classic):

\BabelUppercaseMapping{classicallatin}{`u}{V}

NOTE There are still some rough edges when declaring a mapping with the x extension, or

when two babel languages share the same BCP 47 tag. These issues are expected be

sorted out in future releases.

3.5. Modifying and adding values to ini files

3.39⊕ There is a way to modify or even add values of ini files when they are imported

with \babelprovide or provide=. This can be used to create private variants easily. All

you need is to import the same ini file with a different locale name and different

parameters. Without import you may still modify the identification keys.

Examples of the fine-grained control you have at your disposal are the following. All of

them assume \usepackage[english]{babel}.

EXAMPLE Here is how to change the hyphenation rules because there are several criteria,

or you must follow an editorial style. The following example just uses the default

Spanish rules in English:

\babelprovide[hyphenrules=spanish]{english}

EXAMPLE The required native digits are already defined in the corresponding ini files,

but they can be modified and even added as shown:

\babelprovide[numbers/digits.native=abcdefghij]{english}

This example is somewhat absurd, but now \englishdigits{264} will print ‘cge’. (It

doesn’t work with pdftex.)

30

https://latex3.github.io/babel/news/whats-new-in-babel-3.90.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html

EXAMPLE Currently the date format can be changed only with imported data, but with its

high level interface it’s quite straightforward:

\babelprovide[

import,

date.gregorian/date.long = {[d] ([MMMM]) [y]}]

{english}

Here [d] is the day number, [MMMM] the month name and [y] the year. It will print

something like ‘5 (October) 2024’.

EXAMPLE To set the hyphen to ‘none’ (only luatex).

\babelprovide[typography/prehyphenchar = 0]{english}

This settingmay work with ‘xetex‘, but getting rid of the hyphen char in this engine is

not trivial, because you must rely on the font, and not all fonts behave the same.

EXAMPLE You can define new counters freely, and assign them to \alph:

\babelprovide[

counters/acute = á é í ó ú, % Define a counter named `acute`

alph = acute % Assign it to \alph

]{english}

You can choose the name, and instead of ‘alphabetic‘ it can be another one.

3.6. Hooks

3.9a A hook is a piece of code to be executed at certain events. Some hooks are predefined

when luatex and xetex are used.

3.64⊕ This is not the only way to inject code at those points. The events listed below can

be used as a hook name in \AddToHook in the form babel/〈language-name〉/〈event-name〉
(with * it’s applied to all languages), but there is a limitation, because the parameters

passed with the babelmechanism are not allowed. The \AddToHookmechanism does not

replace the current one in babel. Its main advantage is you can reconfigure babel even

before loading it. See the example below.

\AddBabelHook[〈language〉]{〈name〉}{〈event〉}{〈code〉}

The same name can be applied to several events. Hooks with a certain {〈name〉}may be

enabled and disabled for all defined events with \EnableBabelHook{〈name〉},
\DisableBabelHook{〈name〉}. Names containing the string babel are reserved (they are

used, for example, by \useshortands* to add a hook for the event afterextras).

3.33 They may be also applied to a specific language with the optional argument;

language-specific settings are executed after global ones.

Current events are the following; in some of them you can use one to three TEX

parameters (#1, #2, #3), with the meaning given:

adddialect (language name, dialect name) Used by luababel.def to load the patterns if

not preloaded.

patterns (language name, language with encoding) Executed just after the \language has

been set. The second argument has the patterns name actually selected (in the form of

either lang:ENC or lang).

hyphenation (language name, language with encoding) Executed locally just before

exceptions given in \babelhyphenation are actually set.

defaultcommands Used (locally) in \StartBabelCommands.

31

https://latex3.github.io/babel/news/whats-new-in-babel-3.64.html

encodedcommands (input, font encodings) Used (locally) in \StartBabelCommands. Both

luatex and xetexmake sure the encoded text is read correctly.

stopcommands Used to reset the above, if necessary.

write This event comes just after the switching commands are written to the aux file.

beforeextras Just before executing \extras〈language〉. This event and the next one

should not contain language-dependent code (for that, add it to \extras〈language〉).
afterextras Just after executing \extras〈language〉. For example, the following

deactivates shorthands in all languages:

\AddBabelHook{noshort}{afterextras}{\languageshorthands{none}}

stringprocess Instead of a parameter, you can manipulate the macro \BabelString

containing the string to be defined with \SetString. For example, to use an expanded

version of the string in the definition, write:

\AddBabelHook{myhook}{stringprocess}{%

\protected@edef\BabelString{\BabelString}}

initiateactive (char as active, char as other, original char) 3.9i Executed just after a

shorthand has been ‘initiated’. The three parameters are the same character with

different catcodes: active, other (\string’ed) and the original one.

afterreset 3.9i Executed when selecting a language just after \originalTeX is run and

reset to its base value, before executing \captions〈language〉 and \date〈language〉.
begindocument 3.88⊕ Executed before the code written by ldf files with

\AtBeginDocument. The optional argument with the language in this particular case is

the language that wrote the code. The special value /means ‘return to the core babel

definitions’ (in other words, what follows hasn’t been written by any language).

foreign 24.8⊕ Executed by \foreignlanguage after the language has been set up and

just before typesetting the text from the second argument. Its main purpose it to wrap

the text with some code, with the help of \BabelWrapText. For example, with:

\AddBabelHook{one}{foreign}{\BabelWrapText{\textit{##1}}

\AddBabelHook{two}{foreign}{\BabelWrapText{\parse{##1}}

the text becomes \textit{\parse{〈text〉}}.

Four events are used in hyphen.cfg, which are handled in a quite different way for

efficiency reasons – unlike the precedent ones, they only have a single hook and replace a

default definition.

everylanguage (language) Executed before every language patterns are loaded.

loadkernel (file) By default just defines a few basic commands. It can be used to define

different versions of them or to load a file.

loadpatterns (patterns file) Loads the patterns file. Used by luababel.def.

loadexceptions (exceptions file) Loads the exceptions file. Used by luababel.def.

EXAMPLE The generic unlocalized LATEX hooks are predefined, so that you can write:

\AddToHook{babel/*/afterextras}{\frenchspacing}

which is executed always after the extras for the language being selected (and just

before the non-localized hooks defined with \AddBabelHook).

In addition, locale-specific hooks in the form babel/〈language-name〉/〈event-name〉 are
recognized (executed just before the localized babel hooks), but they are not predefined.

You have to do it yourself. For example, to set \frenchspacing only in bengali:

32

https://latex3.github.io/babel/news/whats-new-in-babel-3.88.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.8.html

\ActivateGenericHook{babel/bengali/afterextras}

\AddToHook{babel/bengali/afterextras}{\frenchspacing}

3.7. Manage auxiliary files

\BabelContentsFiles

3.9a This macro contains a list of “toc” types requiring a command to switch the

language. Its default value is toc,lof,lot, but you may redefine it with \renewcommand to

add further types in case you need or there is a package enabling additional files, e.g., for

theorems, algorithms, notation (it’s up to you to make sure no toc type is duplicated).

3.8. Code based on the selector

\IfBabelSelectorTF{〈selectors〉}{〈true〉}{〈false〉}

3.67⊕ Sometimes a different setup is desired depending on the selector used. Values

allowed in 〈selectors〉 are select, other, foreign, other* (and also foreign* for the

tentative starred version), and it can consist of a comma-separated list. For example:

\IfBabelSelectorTF{other, other*}{A}{B}

is true with any of these two environment selectors.

Its natural place of use is in hooks or in \extras〈language〉.

3.9. Presets

24.12⊕ Apart from configuration files, which are loaded before the locale files, you can

preset some options even before loading babel. One on the aims of this feature is to ease

the integration with automated document generation or conversion workflows.

\AddToHook{babel/presets}{〈settings〉}

This LATEX hook is executed just before locale files (either ini or ldf) are loaded. It’s in

fact, similar to the config files, but it’s executed a little later and there is no need for a

separate file. The following command has been devised for this hook, but other candidates

are \AfterBabelLanguage and \DeclareOption (although the latter can be somewhat

dangerous).

Note these declarations are valid ‘just in case’. If babel is not loaded, they are ignored.

\PassOptionsToLocale{〈option-list〉}{〈locale-name〉}

Its purpose is what its name suggests, and it was devised to be used with the previous

hook.

EXAMPLE You are writing a class and expect lazy loading of secondary languages. You also

want to make sure french, if used, activates its rules for punctuation spacing, and

malayalam, if used, maps digits to the native ones (with luatex):

luatex
\AddToHook{babel/presets}{%

\PassOptionsToLocale{transforms=punctuation.space}{french}%

\PassOptionsToLocale{mapdigits}{malayalam}}

If you want to take a step further and force babel to always use ini files in all secondary

languages, you can resort to the LATEX mechanism to pass options to packages:

33

https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.12.html

\PassOptionsToPackage{provide+=*}{babel}

NOTE Remember localized fonts are preset, too, with lazy loading. In the previous

example you can set, for example, \babelfont[malayalam]{rm}{FreeSerif}.

4. Creating a language

3.10 And what if there is no style for your language or none fits your needs? You may then

define quickly a language with the help of the following macro in the preamble (which

may be used to modify an existing language, too, as explained in the previous subsection).

\babelprovide[〈options〉]{〈language-name〉}

If the language 〈language-name〉 has not been loaded as class or package option and there

are no 〈options〉, it creates an “empty” one with some defaults in its internal structure: the

hyphen rules, if not available, are set to the current ones, left and right hyphen mins are

set to 2 and 3. In either case, caption, date and language system are not defined.

If no ini file is imported with import, 〈language-name〉 is still relevant because in such a

case the hyphenation and like breaking rules (including those for South East Asian and

CJK) are based on it as provided in the ini file corresponding to that name; the same

applies to OpenType language and script.

Conveniently, some options allow to fill the language, and babel warns you about what to

do if there is a missing string. Very likely you will find alerts like this in the log file:

Package babel Warning: \chaptername not set for 'mylang'. Please,

(babel) define it after the language has been loaded

(babel) (typically in the preamble) with:

(babel) \setlocalecaption{mylang}{chapter}{..}

(babel) Reported on input line 26.

In most cases, you will only need to define a few macros. Note languages loaded on the

fly are not yet available in the preamble.

EXAMPLE If you need a language named arhinish:

\usepackage[danish]{babel}

\babelprovide{arhinish}

\setlocalecaption{arhinish}{chapter}{Chapitula}

\setlocalecaption{arhinish}{refname}{Refirenke}

\babelhyphenmins[arhinish]{2}{2}

EXAMPLE Sometimes treating the IPA as a language makes sense:

\documentclass{article}

\usepackage[english]{babel}

\babelprovide{ipa}

\babelfont[ipa]{rm}{DejaVu Sans}

\begin{document}

Blah \foreignlanguage{ipa}{ɔːlˈðəʊ} Blah.

\end{document}

Then you can define shorthands, transforms (with luatex), interchars (with xetex) and

so on, specific to this new ‘language’.

EXAMPLE Locales with names based on BCP 47 codes can be created with something like:

34

\babelprovide[import=en-US]{en-US}

Note, however, mixing ways to identify locales can lead to problems. For example, is yi

the name of the language spoken by the Yi people or is it the code for Yiddish?

The main language is not changed (danish in this example). So, you must add

\selectlanguage{arhinish} or other selectors where necessary.

If the language has been loaded as an argument in \documentclass or \usepackage,

then \babelprovide redefines the requested data.

import=〈locale-tag〉

The 〈language-tag〉 is optional. It imports the full data from the ini file corresponding to

the locale being loaded, as set in babel-〈locale〉.tex (where 〈locale〉 is the last argument in

\babelprovide), including captions and date (and also line breaking rules in newly

defined languages). Unicode engines load the UTF-8 variants, while 8-bit engines load the

LICR (i.e., with macros like \' or \ss) ones.

However, in some cases you may want to load a different ini file. In such a case, you can

set its value.

EXAMPLE For example, the locale ar-DZ is named arabic-algeria. You may prefer the

shorter name arabic if there are no conflicts:

\babelprovide[import=ar-DZ]{arabic}

Besides \today, this option defines an additional command for dates: \〈language〉date,
which takes three arguments, namely, year, month and day numbers. In fact, \today calls

\〈language〉today, which in turn calls

\〈language〉date{\the\year}{\the\month}{\the\day}. 3.44⊕ More convenient is

usually \localedate, which prints the date for the current locale.

hyphenrules=〈language-list〉

With this option, with a space-separated list of hyphenation rules, babel assigns to the

language the first valid hyphenation rules in the list. For example:

\babelprovide[hyphenrules=chavacano spanish italian]{chavacano}

If none of the listed hyphenrules exist, the default behavior applies. Note in this example

we set chavacano as first option, which can seem redundant, but without it, it would select

spanish even if chavacano exists.

A special value is +, which allocates a new language (in the TEX sense). It only makes

sense as the last value (or the only one; the subsequent ones are silently ignored). It is

mostly useful with luatex, because you can add some patterns with \babelpatterns, as for

example:

\babelprovide[hyphenrules=+]{neo}

\babelpatterns[neo]{a1 e1 i1 o1 u1}

In other engines it just suppresses hyphenation (because the pattern list is empty).

3.58⊕ Another special value is unhyphenated, which is an alternative to

justification=unhyphenated.

35

https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.58.html

main

This valueless option makes the language the main one (thus overriding that set when

babel is loaded).

EXAMPLE Let’s assume your document (luatex or xetex) is mainly in Polytonic Greek but

with some sections in Italian. Then, the first attempt should be:

\usepackage[italian, greek.polutoniko]{babel}

But if, say, accents in Greek are not shown correctly, you can try

\usepackage[italian, polytonicgreek, provide=*]{babel}

Remember there is an alternative syntax for the latter:

\usepackage[italian]{babel}

\babelprovide[import, main]{polytonicgreek}

Finally, also remember you might not need to load italian at all if there are only a few

word in this language (see 1.3).

script=〈script-name〉

3.15 Sets the script name to be used by fontspec (e.g., Devanagari). Overrides the value

in the ini file. If fontspec does not define it, then babel sets its tag to that provided by the

ini file. This value is particularly important because it sets the writing direction, so you

must use it if for some reason the default value is wrong.

language=〈language-name〉

3.15 Sets the language name to be used by fontspec (e.g., Hindi). Overrides the value in

the ini file. If fontspec does not define it, then babel sets its tag to that provided by the ini

file. Not so important, but sometimes still relevant.

alph=〈counter-name〉

Assigns to \alph that counter. See the next section.

Alph=〈counter-name〉

Same for \Alph.

casing=〈rules〉

3.90⊕ Selects the casing rules in a few languages. The first ones are predefined by LATEX

(see interface3.pdf), while the following are defined by babel:

Armenian yiwnmaps U+0587 to capital ech and yiwn on uppercasing.

German eszettmaps the lowercase Eszett to a großes Eszett.

Greek iota converts the ypogegrammeni (subscript muted iota) to capital iota when

uppercasing.

Latin nouv in classicallatin and medievallatin reverts the default rules, which maps

u↔ V; uv in ecclesianticallatin and the basic latin locale applies the map u↔ V

(by default it’s u↔ U and v↔ V).

EXAMPLE For the latter:

36

https://latex3.github.io/babel/news/whats-new-in-babel-3.90.html

\usepackage[greek]{babel}

\babelprovide[casing=iota]{greek}

* * *

A few options (only luatex) set some properties of the writing system used by the

language. These properties are always applied to the script, no matter which language is

active. Although somewhat inconsistent, this makes setting a language up easier in most

typical cases.

onchar=ids | fonts | letters

3.38⊕ This option is much like an ‘event’ called when a character belonging to the script

of this locale is found (as its name implies, it acts on characters, not on spaces).

This option is particularly useful in pure Unicode multilingual text, because you can

intermingle with no explicit markup differents scripts, each of which with its own

hyphenation rules and font, and even its characteristic writing direction.

There are currently 3 ‘actions’, which can be used at the same time (separated by spaces):

• With ids, both \language and \localeid are set to the values associated with this

locale, affecting the hyphenation rules, as well as any transforms declared for it.

• With fonts, the fonts are switched to those specified for this locale (as set with

\babelfont). Characters assigned to a locale can be customized with

\babelcharproperty.

• 3.81⊕ Option letters restricts the ‘actions’ to letters, in the TEX sense (i.e., with

catcode 11). Digits and punctuation are then considered part of current locale (as set by

a selector). This option is useful when the main script is non-Latin and there is a

secondary one whose script is Latin.

NOTE An alternative approach with luatex and Harfbuzz is the font option

RawFeature={multiscript=auto}. It does not switch the babel language and therefore

the line breaking rules, but in many cases it can be enough.

NOTE There is no general rule to set the font for a punctuation mark, because it is a

semantic decision and not a typographical one. Consider the following sentence: “ کی , ود ,
and هس are Persian numbers”. In this case the punctuation font must be the English one,

even if the commas are surrounded by non-Latin letters. Quotation marks, parenthesis,

etc., are even more complex. Several criteria are possible, like the main language (the

default in babel), the first letter in the paragraph, or the surrounding letters, among

others, but even so manual switching can still be necessary.

transforms=〈transform-list〉

See section 5.7.

interchar=〈interchar-list〉

See section 5.8.

NOTE (1) If you need shorthands, you can define them with \useshorthands and

\defineshorthand as described above. (2) Captions and \today are “ensured” with

\babelensure (this is the default in ini-based languages).

EXAMPLE When creating a locale from another locale, you may want to reset some

properties, like the BCP 47 tags. Here is an example of how to do it:

37

https://latex3.github.io/babel/news/whats-new-in-babel-3.38.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html

\babelprovide{spanish} % import=es by default

\babelprovide[

import=es,

identification/tag.bcp47 = es-x-medieval,

identification/extension.x.tag.bcp47 = medieval]

{medievalspanish}

5. Locale features

5.1. Hyphenation and line breaking – 1. Commands

Babel deals with three kinds of line breaking rules: Western, typically the LGC group, South

East Asian, like Thai, and CJK, but support depends on the engine: pdftex only deals with

the former, xetex also with the second one (although in a limited way) and CJK, while luatex

provides basic rules for all of them, as well as additional rules (like Uyghur and Tibetan).

With luatex there are also tools for non-standard hyphenation and line breaking rules,

explained in the next section.

\babelhyphenation[〈language〉,〈language〉,...]{〈exceptions〉}

3.9a Sets hyphenation exceptions for the languages given or, without the optional

argument, for all languages (e.g., proper nouns or common loan words, and of course

monolingual documents). Multiple declarations work much like \hyphenation (last wins),

but language exceptions take precedence over global ones.

It can be used only in the preamble, and exceptions are set when the language is first

selected, thus taking into account changes of \lccodes’s done in \extras〈language〉 as
well as the language-specific encoding (not set in the preamble by default). For example:

\babelhyphenation{Wal-hal-la Dar-bhan-ga}

Listed words are saved expanded and therefore it relies on the LICR. Of course, it also

works without the LICR if the input and the font encodings are the same, like in Unicode

based engines.

NOTE Using \babelhyphenation with Southeast Asian scripts is mostly pointless. But with

\babelpatterns (below) you may fine-tune line breaking (only luatex). For example:

\babelpatterns[thai]{ศึก2ษา}

Even if there are no patterns for the language, you can add at least some typical cases.

NOTE Use \babelhyphenation instead of \hyphenation to set hyphenation exceptions in

the preamble before any language is explicitly set with a selector. In the preamble the

hyphenation rules are not always fully set up and an error can be raised.

\babelpatterns[〈language〉,〈language〉,...]{〈patterns〉}

3.9m In luatex only,5 adds or replaces patterns for the languages given or, without the

optional argument, for all languages. If a pattern for a certain combination already exists,

it gets replaced by the new one.

It can be used only in the preamble, and patterns are added when the language is first

selected, thus taking into account changes of \lccodes’s done in \extras〈language〉 as
well as the language-specific encoding (not set in the preamble by default). Multiple

\babelpatterns’s are allowed.

5With luatex exceptions and patterns can be modified almost freely. However, this is very likely a task for a

separate package and babel only provides the most basic tools.

38

Listed patterns are saved expanded and therefore it relies on the LICR. Of course, it also

works without the LICR if the input and the font encodings are the same, like in Unicode

based engines.

3.31 (Only luatex.) With \babelprovide and imported CJK languages, a simple generic

line breaking algorithm (push-out-first) is applied, based on a selection of the Unicode rules

(3.32 it is disabled in verbatim mode, or more precisely when the hyphenrules are set to

nohyphenation). It can be activated alternatively by setting explicitly the intraspace.

3.27 Interword spacing for Thai, Lao and Khmer is activated automatically if a language

with one of those scripts is loaded with \babelprovide. See the sample on the babel

repository. With both Unicode engines, spacing is based on the “current” em unit (the size

of the previous char in luatex, and the font size set by the last \selectfont in xetex).

NOTE With Unicode engines, a line break can happen just before an explicit combining

char (e.g., g,̃ used in Guarani and Filipino, is not included as a combined char and it’s

represented in Unicode as U+0067 U+0303. This issue is not directly related to babel, but

to the hyphenation patterns and/or the font renderer. However, at least with luatex

there is a workaround (change the language name to what you are using):

\babelposthyphenation{guarani}{ | [{0300}-{036F}] }{ remove, {} }

The Lua pattern means ‘a discretionary followed by a character in the range

U+0300–U+0367 (which contains combining chars)’. An alternative to a transform is

\babelpatterns.

\babelhyphenmins * [〈language〉,〈language〉,...]{〈left〉}{〈right〉}[〈hyphenationmin〉]

24.10⊕ See the news page for the rationale for this command. It sets the corresponding

values for the given languages (all languages without the optional argument). With the star,

the values are also applied immediately (the optional argument and the star are currently

incompatible). The optional argument is available only in luatex.

EXAMPLE You are typesetting a book with wide lines and want to limit the number of

hyphens in all languages:

\babelhyphenmins{3}{4}

But there is also some 3-column text and you want to be more flexible:

\begin{multicols}{3}

\babelhyphenmins*{2}{3}

...

\end{multicols}

\babelhyphen * {〈type〉}
\babelhyphen * {〈text〉}

3.9a It is customary to classify hyphens in two types: (1) explicit or hard hyphens, which

in TEX are entered as -, and (2) optional or soft hyphens, which are entered as \-. Strictly, a

soft hyphen is not a hyphen, but just a breaking opportunity or, in TEX terms, a

“discretionary”; a hard hyphen is a hyphen with a breaking opportunity after it. A further

type is a non-breaking hyphen, a hyphen without a breaking opportunity.

In TEX, - and \- forbid further breaking opportunities in the word. This is the desired

behavior very often, but not always, and therefore many languages provide shorthands for

these cases. Unfortunately, this has not been done consistently: for example, "- in Dutch,

Portuguese, Catalan or Danish is a hard hyphen, while in German, Spanish, Norwegian,

Slovak or Russian it is a soft hyphen. Furthermore, some of them even redefine \-, so that

you cannot insert a soft hyphen without breaking opportunities in the rest of the word.

Therefore, some macros are provided with a set of basic “hyphens” which can be used by

themselves, to define a user shorthand, or even in language files.

39

https://latex3.github.io/babel/news/whats-new-in-babel-24.10.html

• \babelhyphen{soft} and \babelhyphen{hard} are self explanatory.

• \babelhyphen{repeat} inserts a hard hyphen which is repeated at the beginning of the

next line, as done in languages like Polish, Portuguese and Spanish.

• \babelhyphen{nobreak} inserts a hard hyphen without a break after it (even if a space

follows).

• \babelhyphen{empty} inserts a break opportunity without a hyphen at all.

• \babelhyphen{〈text〉} is a hard “hyphen” using 〈text〉 instead. A typical case is

\babelhyphen{/}.

With all of them, hyphenation in the rest of the word is enabled. If you don’t want to

enable it, there is a starred counterpart: \babelhyphen*{soft} (which in most cases is

equivalent to the original \-), \babelhyphen*{hard}, etc.

Note hard is also good for isolated prefixes (e.g., anti-) and nobreak for isolated suffixes

(e.g., -ism), but in both cases \babelhyphen*{nobreak} is usually better.

There are also some differences with LATEX: (1) the character used is that set for the

current font, while in LATEX it is hardwired to - (a typical value); (2) the hyphen to be used

in fonts with a negative \hyphenchar is -, as in LATEX, but it can be changed to another

value by redefining \babelnullhyphen; (3) a break after the hyphen is forbidden if

preceded by a glue>0 pt (at the beginning of a word, provided it is not immediately

preceded by, say, a parenthesis).

\begin{hyphenrules}{〈language〉} ... \end{hyphenrules}

The environment hyphenrules can be used to select only the hyphenation rules to be

used (it can be used as command, too). This can for instance be used to select

‘nohyphenation’, provided that in language.dat the ‘language’ nohyphenation is defined

by loading zerohyph.tex. It deactivates language shorthands, too (but not user

shorthands).

Except for these simple uses, hyphenrules is deprecated and otherlanguage* (the

starred version) is preferred, because the former does not take into account possible

changes in encodings of characters like, say, ' done by some languages (e.g., italian, french,

ukrainian).

NOTE For the hyphenation to work correctly, lccodes cannot change, because TEX only

takes into account the values when the paragraph is hyphenated, i.e., when it has been

finished.6 So, if you write a chunk of French text with \foreignlanguage, the

apostrophes might not be taken into account. This is a limitation of TEX, not of babel.

Alternatively, you may use \useshorthands to activate ' and \defineshorthand, or

redefine \textquoteright (the latter is called by the non-ASCII right quote).

5.2. Hyphenation and line breaking – 2. ‘Provide’ options

justification=unhyphenated | kashida | elongated | padding

3.59⊕ There are currently 4 options. Note they are language dependent, so that they will

not be applied to other languages.

The first one (unhyphenated) activates a line breaking mode that allows breaks only at

spaces, which can be stretched to arbitrary amounts. Although for European standards the

result may look odd, in some writing systems, like Malayalam and other Indic scripts, this

has been the customary (although not always the desired) practice. Because of that, no

locale enables currently this mode by default (Amharic is an exception). Unlike \sloppy,

the \hfuzz and the \vfuzz are not changed, because this line breaking mode is not really

‘sloppy’ (in other words, overfull boxes are reported as usual).

6This explainswhyLATEXassumes the lowercasemapping of T1 anddoes not provide a tool formultiplemappings.

Unfortunately, \savinghyphcodes is not a solution either, because lccodes for hyphenation are frozen in the format

and cannot be changed.

40

https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html

The second and the third are for the Arabic script. It sets the linebreaking and

justification method, which can be based on the arabic tatweel character or in the

‘justification alternatives’ OpenType table (jalt). For an explanation see the babel site.

3.81⊕ The option padding has been devised primarily for Tibetan. It’s still somewhat

experimental. Again, there is an explanation in the babel site.

linebreaking=

3.59⊕ Just a synonymous for justification. Depending on the language, this name can

make more sense.

intraspace=〈base〉 〈shrink〉 〈stretch〉

Sets the interword space for the writing system of the language, in em units (so, 0 .1 0 is

0em plus .1em). Like \spaceskip, the em unit applied is that of the current text (more

precisely, the previous glyph). Currently used only in Southeast Asian scripts, like Thai, and

CJK.

intrapenalty=〈penalty〉

Sets the interword penalty for the writing system of this language. Currently used only in

Southeast Asian scripts, like Thai. If 0, which is the default value, no penalty is inserted.

5.3. Shorthands – 1. Commands

A shorthand is a sequence of one or two characters that expands to arbitrary TEX code.

Shorthands can be used for different kinds of things; for example: (1) in some languages

shorthands such as "a are defined to be able to hyphenate the word if the encoding is OT1;

(2) in some languages shorthands such as ! are used to insert the right amount of white

space; (3) several kinds of discretionaries and breaks can be inserted easily with "-, "=, etc.

The package inputenc as well as luatex and xetex have alleviated entering non-ASCII

characters, but minority languages and some kinds of text can still require characters not

directly available on the keyboards (and sometimes not even as separated or precomposed

Unicode characters). As to the point 2, now pdfTeX provides \knbccode, and luatex can

manipulate the glyph list. Tools for point 3 can still be very useful in general.

There are four levels of shorthands: user, language, system, and language user (by order

of precedence). In most cases, you will use only shorthands provided by languages.

NOTE Keep in mind the following:

1. Activated chars used for two-char shorthands cannot be followed by a closing brace

} and the spaces following are gobbled. With one-char shorthands (e.g., :), they are

preserved.

2. If on a certain level (system, language, user, language user) there is a one-char

shorthand, two-char ones starting with that char and on the same level are ignored.

3. Since they are active, a shorthand cannot contain the same character in its definition

(except if deactivated with, e.g., \string).

TROUBLESHOOTING A typical error when using shorthands is the following:

! Argument of \language@active@arg" has an extra }.

It means there is a closing brace just after a shorthand, which is not allowed (e.g., "}).

Just add {} after (e.g., "{}}).

41

https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.81.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.59.html

\shorthandon{〈shorthands-list〉}
\shorthandoff * {〈shorthands-list〉}

It is sometimes necessary to switch a shorthand character off temporarily, because it must

be used in an entirely different way. For this purpose, the user commands \shorthandoff

and \shorthandon are provided. They each take a list of characters as their arguments.

The command \shorthandoff sets the \catcode for each of the characters in its

argument to other (12); the command \shorthandon sets the \catcode to active (13). Both

commands work on only ‘known’ shorthand characters, and an error will be raised

otherwise. You can check if a character is a shorthand with \ifbabelshorthand (see

below).

3.9a However, \shorthandoff does not behave as you would expect with characters like

~ or ^, because they usually are not “other”. For them \shorthandoff* is provided, so that

with

\shorthandoff*{~^}

~ is still active, very likely with the meaning of a non-breaking space, and ^ is the

superscript character. The catcodes used are those when the shorthands are defined,

usually when language files are loaded.

If you do not need shorthands, or prefer an alternative approach of your own, you may

want to switch them off with the package option shorthands=off, as described below.

WARNING It is worth emphasizing that these macros are meant for temporary changes.

Whenever possible, shorthands must be always enabled or disabled.

\useshorthands * {〈char〉}

It initiates the definition of user-defined shorthand sequences. It has one argument, the

character that starts these personal shorthands.

3.9a User shorthands are not always alive, as they may be deactivated by languages (for

example, if you use " for your user shorthands and switch from german to french, they

stop working). Therefore, a starred version \useshorthands*{〈char〉} is provided, which

makes sure shorthands are always activated.

If the package option shorthands is used, you must include any character to be activated

with \useshorthands.

\defineshorthand[〈language〉,〈language〉,...]{〈shorthand〉}{〈code〉}

It takes two arguments: the first is a one- or two-character shorthand sequence, and the

second is the code the shorthand should expand to.

3.9a An optional argument allows to (re)define language and system shorthands (some

languages do not activate shorthands, so you may want to add

\languageshorthands{〈language〉} to the corresponding \extras〈language〉, as explained
below). By default, user shorthands are (re)defined.

User shorthands override language ones, which in turn override system shorthands.

Language-dependent user shorthands take precedence over “normal” user shorthands.

EXAMPLE Let’s assume you want a unified set of shorthands for discretionaries (languages

do not define shorthands consistently, and "-, \-, "= have different meanings). You can

start with, say:

\useshorthands*{"}

\defineshorthand{"*}{\babelhyphen{soft}}

\defineshorthand{"-}{\babelhyphen{hard}}

However, the behavior of hyphens is language-dependent. For example, in languages

like Polish and Portuguese, a hard hyphen inside compound words are repeated at the

beginning of the next line. You can then set:

42

\defineshorthand[*polish,*portuguese]{"-}{\babelhyphen{repeat}}

Here, options with * set a language-dependent user shorthand, which means the

generic declarations above for "- apply to all languages except polish and portuguese;

without * they would (re)define the language shorthands instead, which are overridden

by user ones.

Now, you have a single unified shorthand ("-), with a content-based meaning

(‘compound word hyphen’) whose visual behavior is that expected in each context.

\languageshorthands{〈language〉}

Used to switch the shorthands on the language level. It takes one argument, the name of a

language or none (the latter does what its name suggests).7 Note that for this to work the

language should have been specified as an option when loading the babel package. For

example, you can use in english the shorthands defined by ngerman with

\addto\extrasenglish{\languageshorthands{ngerman}}

(You may also need to activate them as user shorthands in the preamble with, for example,

\useshorthands or \useshorthands*.)

EXAMPLE Very often, this is a more convenient way to deactivate shorthands than

\shorthandoff, for example if you want to define a macro to ease typing phonetic

characters with tipa:

\newcommand{\myipa}[1]{{\languageshorthands{none}\tipaencoding#1}}

\babelshorthand{〈shorthand〉}

With this command you can use a shorthand even if (1) not activated in shorthands (in

this case only shorthands for the current language are taken into account, i.e., not user

shorthands), (2) turned off with \shorthandoff or (3) deactivated with the internal

\bbl@deactivate; for example, \babelshorthand{"u} or \babelshorthand{:}. (You can

conveniently define your own macros, or even your own user shorthands provided they do

not overlap.)

EXAMPLE Since by default shorthands are not activated until \begin{document}, you may

use this macro when defining the \title in the preamble:

\title{Documento científico\babelshorthand{"-}técnico}

For your records, here is a list of shorthands, but you must double check them, as they

may change:8

Languages with no shorthands Croatian, English (any variety), Indonesian, Hebrew,

Interlingua, Irish, Lower Sorbian, Malaysian, North Sami, Romanian, Scottish, Welsh

Languages with only " as defined shorthand character Albanian, Bulgarian, Danish,

Dutch, Finnish, German (old and new orthography, also Austrian), Icelandic, Italian,

Norwegian, Polish, Portuguese (also Brazilian), Russian, Serbian (with Latin script),

Slovene, Swedish, Ukrainian, Upper Sorbian

Basque " ' ~

Breton : ; ? !

7Actually, any name not corresponding to a language group does the same as none. However, follow this conven-

tion because it might be enforced in future releases of babel to catch possible errors.
8Thanks to Enrico Gregorio.

43

Catalan " ' `

Czech " -

Esperanto ^

Estonian " ~

French (all varieties) : ; ? !

Galician " . ' ~ 〈 〉
Greek (ancient, polutoniko, only 8-bit TEX) ~, (optional, see the manual for Greek) ;

Hungarian `

Kurmanji ^

Latin " ^ =

Slovak " ^ ' -

Spanish " . 〈 〉 ' ~

Turkish : ! =

In addition, the babel core declares ~ as a one-char shorthand which is let, like the

standard ~, to a non breaking space. Actually, this declaration serves to nothing, but it is

preserved for backward compatibility.

\ifbabelshorthand{〈character〉}{〈true〉}{〈false〉}

3.23 Tests if a character has been made a shorthand.

NOTE Both ltxdoc and babel use \AtBeginDocument to change some catcodes, and babel

reloads hhline to make sure : has the right one, so if you want to change the catcode of |

it has to be done using the same method at the proper place, with

\AtBeginDocument{\DeleteShortVerb{\|}}

before loading babel. This way, when the document begins the sequence is (1) make |

active (ltxdoc); (2) make it inactive (your settings); (3) make babel shorthands active

(babel); (4) reload hhline (babel, now with the correct catcodes for | and :).

NOTE Using a character mathematically active (i.e., with math code "8000) as a shorthand

can make TEX enter in an infinite loop in some rare cases. (There is a partial solution.)

5.4. Shorthands – 2. Package options

activeacute

activegrave

For some languages babel supports these options to set ' and `, respectively, as a

shorthand in case it is not done by default.

shorthands=〈char〉〈char〉... | off

The only language shorthands activated are those given, like, e.g.:

\usepackage[esperanto,french,shorthands=:;!?]{babel}

If ' is included, activeacute is set; if ` is included, activegrave is set. Active characters

(like ~) should be preceded by \string (otherwise they will be expanded by LATEX before

they are passed to the package and therefore they will not be recognized); however, t is

provided for the common case of ~ (as well as c for not so common case of the comma).

With shorthands=off no language shorthands are defined. As some languages use this

mechanism for tools not available otherwise, a macro \babelshorthand is defined, which

allows using them; see above.

44

safe=none | ref | bib

Some LATEX macros are redefined so that using shorthands is safe. With safe=bib only

\nocite, \bibcite and \bibitem are redefined. With safe=ref only \newlabel, \ref and

\pageref are redefined (as well as a few macros from varioref and ifthen).

With safe=none no macro is redefined. This option is strongly recommended, because a

good deal of incompatibilities and errors are related to these redefinitions. As of 3.34 , in

ε-TEX based engines (i.e., almost every engine except the oldest ones) shorthands can be

used in these macros (formerly you could not).

math=active | normal

Shorthands are mainly intended for text, not for math. By setting this option with the

value normal they are deactivated in math mode (default is active) and things like ${a'}$

(a closing brace after a shorthand) are not a source of trouble anymore.

5.5. Digits and counters

3.20 About thirty ini files define a field named digits.native. When it is present, two

macros are created: \〈language〉digits and \〈language〉counter (only luatex and xetex).

With the first, a string of ‘Latin’ digits are converted to the native digits of that language;

the second takes a counter name as argument. With the option maparabic in

\babelprovide, \arabic is redefined to produce the native digits (this is done globally, to

avoid inconsistencies in, for example, page numbering, and note as well dates do not rely

on \arabic.)

For example:

\usepackage[telugu, provide=*]{babel}

% Or also, if you want, with:

% provide={ maparabic }

\babelfont{rm}{Gautami}

\begin{document}

\telugudigits{1234}

\telugucounter{section}

\end{document}

Languages providing native digits in all or some variants are:

Arabic

Assamese

Bangla

Bhojpuri

Bodo

Burmese

Cantonese

Central Kurdish

Chinese

Dogri

Dzongkha

Gujarati

Haryanvi

Hindi

Hmong Njua

Kannada

Kashmiri

Khmer

Konkani

Korean

Lao

Maithili

Malayalam

Manipuri

Marathi

Mazanderani

Nepali

Northern

Kurdish

Northern Luri

Odia

Pashto

Persian

Punjabi

Rajasthani

Sanskrit

Santali

Sindhi

Tamil

Telugu

Thai

Tibetan

Urdu

Uyghur

Uzbek

Vai

3.30 With luatex there is an alternative approach for mapping digits, namely,

mapdigits. Conversion is based on the language and it is applied to the typeset text (not

math, PDF bookmarks, etc.) before bidi and fonts are processed (i.e., to the node list as

generated by the TEX code). This means the local digits have the correct bidirectional

behavior (unlike Numbers=Arabic in fontspec, which is deprecated). Another option is the

transform digits.native.

NOTE With xetex you can use the option Mapping when defining a font.

45

\localenumeral{〈style〉}{〈number〉}
\localecounter{〈style〉}{〈counter〉}

3.41⊕ Many ini locale files provide information about non-positional numerical

systems, based on those predefined in CSS. They only work with luatex and xetex and are

fully expandable (even inside an unprotected \edef). Currently, they are limited to

numbers below 10000.

There are several ways to use them (for the available styles in each language, see the list

below):

• \localenumeral{〈style〉}{〈number〉}, like \localenumeral{abjad}{15}

• \localecounter{〈style〉}{〈counter〉}, like \localecounter{lower}{section}

• In \babelprovide, as an argument to the keys alph and Alph, which redefine what

\alph and \Alph print. For example:

\babelprovide[alph=alphabetic]{thai}

The styles are:

Ancient Greek lower.ancient, upper.ancient

Amharic afar, agaw, ari, blin, dizi, gedeo, gumuz, hadiyya, harari, kaffa, kebena,

kembata, konso, kunama, meen, oromo, saho, sidama, silti, tigre, wolaita, yemsa

Arabic abjad, maghrebi.abjad

Armenian lower.letter, upper.letter

Belarusan, Bulgarian, Church Slavic, Macedonian, Serbian lower, upper

Bangla alphabetic

Central Kurdish alphabetic

Chinese cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,

parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Church Slavic (Glagolitic) letters

Coptic epact, lower.letters

French date.day (mainly for internal use).

Georgian letters

Greek lower.modern, upper.modern, lower.ancient, upper.ancient (all with keraia)

Hebrew letters (3.93⊕ if the language is loaded explicitly, also letters.plain,

letters.gershayim, letters.final)

Hindi alphabetic

Italian lower.legal, upper.legal

Japanese hiragana, hiragana.iroha, katakana, katakana.iroha, circled.katakana,

informal, formal, cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,

parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Khmer consonant

Korean consonant, syllable, hanja.informal, hanja.formal, hangul.formal,

cjk-earthly-branch, cjk-heavenly-stem, circled.ideograph,

parenthesized.ideograph, fullwidth.lower.alpha, fullwidth.upper.alpha

Marathi alphabetic

Persian abjad, alphabetic

Russian lower, lower.full, upper, upper.full

Syriac letters

Tamil ancient

Thai alphabetic

Ukrainian lower , lower.full, upper , upper.full

3.45⊕ In addition, native digits (in languages defining them) may be printed with the

numeral style digits.

46

https://latex3.github.io/babel/news/whats-new-in-babel-3.41.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.93.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.45.html

5.6. Dates

3.45⊕ When the data is taken from an ini file, you may print the date corresponding to

the Gregorian calendar and other lunisolar systems with the following command.

\localedate[〈calendar=.., variant=.., convert〉]{〈year〉}{〈month〉}{〈day〉}

By default the calendar is the Gregorian, but an ini file may define strings for other

calendars: am (ethiopic), ar and ar-* (islamic), cop (coptic), fa (islamic, persian), he

(hebrew), hi (indian), th (buddhist). In the latter case, the three arguments are the year,

the month, and the day for those in the corresponding calendar. They are not the Gregorian

date to be converted (which means, say, 13 is a valid month number with

calendar=hebrew and calendar=coptic). However, with the option convert it’s converted

(using internally the following command).

Even with a certain calendar there may be variants. In Kurmanji the default variant

prints something like 30. Çileya Pêşîn 2019, but with variant=izafa it prints 31’ê Çileya

Pêşînê 2019.

The default calendar for a language can be set in \babelprovide, with the key calendar

(an empty value is the same as gregorian). In this case, \today always converts the date.

Variants are preceded by a dot, so that calendar = .genitive in serbian \today selects

the date in this variant (more explicitly is gregorian.genitive).

EXAMPLE By default, thai prints the date with \today in the Buddhist calendar, but if you

need a date in the Gregorian one, write:

\localedate[calendar=gregorian]{\year}{\month}{\day}

(Remember \year, \month and \day is the current Gregorian date, so no conversion is

necessary.)

EXAMPLE On the other hand (and following the CLDR), the preferred calendar in most

locales for Arabic is gregorian (in ar-SA is islamic-umalqura), so to set

islamic-civil as the default one:

\babelprovide[import, calendar=islamic-civil]{arabic}

\babelcalendar[〈date〉]{〈calendar〉}{〈year-macro〉}〈month-macro〉〈day-macro〉

3.76⊕ Although calendars aren’t the primary concern of babel, the package should be

able to, at least, generate correctly the current date in the way users would expect in their

own culture. Currently, \localedate can print dates in a few calendars (provided the ini

locale file has been imported), but year, month and day had to be entered by hand, which is

inconvenient. With this macro, the current date is converted and stored in the three last

arguments, which must be macros. Allowed calendars are:

buddhist

chinese 3.94⊕
coptic

ethiopic

hebrew

islamic-civil

islamic-umalqura

persian

The optional argument converts the given date, in the form ‘〈year〉-〈month〉-〈day〉’,
although for practical reasons most calendars accept only a restricted range of years.

Please, refer to the page on the news for 3.76 in the babel site for further details.

5.7. Transforms

Transforms (only luatex) provide a way to process the text on the typesetting level in

several language-dependent ways, like non-standard hyphenation, special line breaking

rules, script to script conversion, spacing conventions and so on.9

9They are similar in concept, but not the same, as those in Unicode. The main inspiration for this feature is the

Omega transformation processes.

47

https://latex3.github.io/babel/news/whats-new-in-babel-3.45.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.76.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.94.html

It currently embraces \babelprehyphenation and \babelposthyphenation.

3.57⊕ Several ini files predefine some transforms. They are activated with the key

transforms in \babelprovide, either if the locale is being defined with this macro or the

languages has been previously loaded as a class or package option, as the following

example illustrates:

\usepackage[hungarian]{babel}

\babelprovide[transforms = digraphs.hyphen]{hungarian}

3.67⊕ Transforms predefined in the ini locale files can be made attribute-dependent, too.

When an attribute between parenthesis is inserted subsequent transforms will be assigned

to it (up to the list end or another attribute). For example, and provided an attribute called

\withsigmafinal has been declared:

transforms = transliteration.omega (\withsigmafinal) sigma.final

This applies transliteration.omega always, but sigma.final only when

\withsigmafinal is set.

Here are the transforms currently predefined. (A few may still require some fine-tuning.

More to follow in future releases.)

digits.native 24.9⊕ An alternative to mapdigits, avail-

able in the same locales. This transform is ap-

plied before the first prehyphenation, while

mapdigits is applied after the last posthy-

phenation. Another difference is mapdigits

cannot be disabled in the middle of a para-

graph. (This transform is not declared explic-

itly in ini files. Instead, it’s defined by babel

if the key numbers/digits.native exists.)

Arabic transliteration.dad Applies the transliteration system devised by

Yannis Haralambous for dad (simple and TEX-

friendly). Not yet complete, but sufficient for

most texts.

Croatian digraphs.ligatures Ligatures DŽ, Dž, dž, LJ, Lj, lj, NJ, Nj, nj. It

assumes they exist. This is not the recom-

mended way to make these transformations

(the best way is with OTF features), but it can

get you out in a hurry.

Croatian,

Czech, Polish,

Portuguese,

Slovak,

Spanish

hyphen.repeat Explicit hyphens behave like \babelhyphen

{repeat}.

Czech, Polish,

Slovak

oneletter.nobreak Converts a space after a non-syllabic prepo-

sition or conjunction into a non-breaking

space.

Finnish prehyphen.nobreak Line breaks just after hyphens prepended to

words are prevented, as in “pakastekaapit ja

-arkut”.

French punctuation.space Rules for proper spacing with characters

;:!?«» are applied.

Greek diaeresis.hyphen Removes the diaeresis above iota and upsilon

if hyphenated just before. It works with the

three variants.

48

https://latex3.github.io/babel/news/whats-new-in-babel-3.57.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.9.html

Greek transliteration.omega Although the provided combinations are not

the full set, this transform follows the syn-

tax of Omega: = for the circumflex, v for

digamma, and so on. For better compatibility

with Levy’s system, ~ (as ‘string’) is an alter-

native to =. ' is tonos inMonotonic Greek, but

oxia in Polytonic and Ancient Greek.

Greek sigma.final The transliteration system above does not

convert the sigma at the end of a word (on

purpose). This transform does it. To prevent

the conversion (an abbreviation, for exam-

ple), write "s.

Hebrew,

Yiddish

transliteration.cj A transliteration system based on that de-

vised by Christian Justen for ‘cjhebrew‘. Fi-

nal letters are not converted, and the furtive

patah is not shifted.

Hindi, Sanskrit transliteration.hk The Harvard-Kyoto system to romanize De-

vanagari.

Hindi, Sanskrit punctuation.space Inserts a space before the following four

characters: !?:; .

Hungarian digraphs.hyphen Hyphenates the long digraphs ccs, ddz, ggy,

lly, nny, ssz, tty and zzs as cs-cs, dz-dz, etc.

Indic scripts danda.nobreak Prevents a line break before a danda or

double danda if there is a space. For As-

samese, Bengali, Gujarati, Hindi, Kannada,

Malayalam, Marathi, Odia, Tamil, Telugu.

Latin digraphs.ligatures Replaces the groups ae, AE, oe, OE with æ,Æ,

œ,Œ.

Latin letters.noj Replaces j, J with i, I.

Latin letters.uv Replaces v, U with u, V.

Sanskrit transliteration.iast The IAST system to romanize Devanagari

(thanks to Maximilian Mehner).

Serbian transliteration.gajica (Note serbian with ini files refers to the

Cyrillic script, which is here the target.) The

standard system devised by Ljudevit Gaj.

Arabic,

Persian

kashida.plain Experimental. A very simple and basic trans-

form for ‘plain’ Arabic fonts, which attempts

to distribute the tatweel as evenly as possible

(starting at the end of the line). See the news

for version 3.59.

Arabic,

Persian

kashida.base Experimental 3.94⊕ . Much like the previous

one, but with diacritics stacked in the actual

base character andnot the kashida extension.

With evenly inserted tatweels results are bet-

ter.

\babelposthyphenation[〈options〉]{〈hyphenrules-name〉}{〈lua-pattern〉}{〈replacement〉}

3.37-3.39⊕ With luatex it is possible to define non-standard hyphenation rules, like f-f→
ff-f, repeated hyphens, ranked ruled (or more precisely, ‘penalized’ hyphenation points),

and so on. A few rules are currently provided (see above), but they can be defined as shown

in the following example, where {1} is the first captured char (between () in the pattern):

49

https://latex3.github.io/babel/news/whats-new-in-babel-3.94.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.37.html

\babelposthyphenation{german}{([fmtrp]) | {1}}

{

{ no = {1}, pre = {1}{1}- }, % Replace first char with disc

remove, % Remove automatic disc (2nd node)

{} % Keep last char, untouched

}

In the replacements, a captured char may be mapped to another, too. For example, if the

first capture reads ([ΐΰ]), the replacement could be {1|ΐΰ|ίύ}, which maps ΐ to ί, and ΰ

to ύ, so that the diaeresis is removed.

This feature is activated with the first \babelposthyphenation or

\babelprehyphenation.

3.85⊕ Another option is label, which takes a value similar to those in \babelprovide

key transforms (in fact, the latter just applies this option). This label can be used to turn

on and off transforms with a higher level interface, by means of \enablelocaletransform

and \disablelocaletransform (see below).

3.85⊕ When used in conjunction with label, this key makes a transform font

dependent. As an example, the rules for Arabic kashida can differ depending on the font

design. The value consists in a list of space-separated font tags:

\babelprehyphenation[label=transform.name, fonts=rm sf]{..}{..}

Tags can adopt two forms: a family, such as rm or tt, or the set family/series/shape. If a font

matches one of these conditions, the transform is enabled. The second tag in rm rm/n/it is

redundant. There are no wildcards; so, for italics you may want to write something like

sf/m/it sf/b/it.

Transforms set for specific fonts (at least once in any language) are always reset with a

font selector.

In \babelprovide, transform labels can be tagged before their name, with a list

separated with colons, like:

transforms = rm:sf:transform.name

3.67⊕ With the optional argument you can associate a user-defined transform to an

attribute, so that it’s active only when it’s set (currently its attribute value is ignored). With

this mechanism transforms can be set or unset even in the middle of paragraphs, and

applied to single words. To define, set and unset the attribute, the LATEX kernel provides the

macros \newattribute, \setattribute and \unsetattribute. The following example

shows how to use it, provided an attribute named \latinnoj has been declared:

\babelprehyphenation[attribute=\latinnoj]{latin}{ J }{ string = I }

See the babel site for a more detailed description and some examples. It also describes a

few additional replacement types (string, penalty).

Although the main purpose of this command is non-standard hyphenation, it may

actually be used for other transformations (after hyphenation is applied, so you must take

discretionaries into account).

You are limited to substitutions as done by lua, although a future implementation may

alternatively accept lpeg.

\babelprehyphenation[〈options〉]{〈locale-name〉}{〈lua-pattern〉}{〈replacement〉}

3.44-3-52⊕ It is similar to the latter, but (as its name implies) applied before hyphenation,

which is particularly useful in transliterations. There are other differences: (1) the first

argument is the locale instead of the name of the hyphenation patterns; (2) in the search

patterns = has no special meaning, while | stands for an ordinary space; (3) in the

replacement, discretionaries are not accepted.

50

https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.67.html
https://latex3.github.io/babel/guides/non-standard-hyphenation-with-luatex.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.44.html

See the description above for the optional argument.

This feature is activated with the first \babelposthyphenation or

\babelprehyphenation.

EXAMPLE You can replace a character (or series of them) by another character (or series

of them). Thus, to enter ž as zh and š as sh in a newly created locale for transliterated

Russian:

\babelprovide[hyphenrules=+]{russian-latin} % Create locale

\babelprehyphenation{russian-latin}{([sz])h} % Create rule

{

string = {1|sz|šž},

remove

}

EXAMPLE The following rule prevent the word “a” from being at the end of a line:

\babelprehyphenation{english}{|a|}

{}, {}, % Keep first space and a

{ insert, penalty = 10000 }, % Insert penalty

{} % Keep last space

}

NOTE With luatex there is another approach to make text transformations, with the

function fonts.handlers.otf.addfeature, which adds new features to an OTF font

(substitution and positioning). These features can be made language-dependent, and

babel by default recognizes this setting if the font has been declared with \babelfont.

The transformsmechanism supplements rather than replaces OTF features.

With xetex, where transforms are not available, there is still another approach, with

font mappings, mainly meant to perform encoding conversions and transliterations.

Mappings, however, are linked to fonts, not to languages.

\enablelocaletransform{〈label〉}
\disablelocaletransform{〈label〉}

3.85⊕ Enables and disables the transform with the given label in the current language.

5.8. Support for xetex interchar

3.97⊕ A few macros are provided to deal with locale dependent inter-character rules (aka

‘interchar’).

\babelcharclass{〈locale〉}{〈name〉}{〈char-list〉}

Declares a new character class, which is assigned to the characters in {〈char-list〉},
entered either as characters or in macro form (e.g., \}). If you need to enter them by their

numeric value, use the TEX ^-notation (e.g., ^^^^1fa0). Ranges are allowed, with a hyphen

(e.g., .,;a-zA-Z). If you need the hyphen to be assigned a class, write it at the very

beginning of the list.

There are several predefined ‘global’ classes, namely default, cjkideogram,

cjkleftpunctuation, cjkrightpunctuation, boundary, and ignore, which are described

in the xetexmanual. These classes are used by the linebreak.basic, described below.

\babelinterchar[〈options〉]{〈locale〉} {〈class-first〉}{〈class-second〉}{〈code〉}

{〈class-first〉} and {〈class-second〉} can be comma separated lists of char classes, and all

combinations are defined (so that 2 first classes with 2 second classes, define 4

combinations). In the 〈options〉 field a key named label is available, which allows to enable

51

https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.97.html

or to disable the rule with the following two commands. Like prehyphenation transforms

in luatex, interchars are not applied if the current hyphenation rules are nohyphenation.

\enablelocaleinterchar{〈label〉}
\disablelocaleinterchar{〈label〉}

Enable or disable the interchar rules with the given label for the current language.

EXAMPLE Not very useful, but illustrative (taken from the unfortunately obsolete

interchar package, by Zou Ho), to colorize the letters ‘x’ and ‘y’ (this way to group text is

usually not a good idea, however).

\usepackage{color}

\babelcharclass{english}{colored}{xy}

\babelinterchar{english}{default, boundary}{colored}{\bgroup\color{red}}

\babelinterchar{english}{colored}{default, boundary}{\egroup}

A more realistic example follows, which inserts a thin space between a digit and a

percent sign. Note the former is entered as a range, and the latter in command form:

\babelcharclass{english}{digit}{0-9}

\babelcharclass{english}{percent}{\%}

\babelinterchar[label=percent]{english}{digit}{percent}{\,}

WARNING Keep in mind two points: (1) a character can be assigned a single class; this is a

limitation in the interchar mechanisms that often leads to incompatibilities; (2) since

the character classes set with \babelcharclass are saved (so that they can be restored),

there is a limit in the number of characters in the {〈char-list〉} (which, however, must

be large enough for many uses).

interchar=〈interchar-list〉

24.1⊕ This key in \babelprovide activates predefined rules for the ‘provided’ locale.

Currently the following interchar’s are defined:

Cantonese,

Chinese,

Japanese,

Korean

linebreak.basic 24.4⊕ Basic settings for CJK defined in

(plain) xetex. See the linked news page for

details.

French punctuation.space Rules for proper spacing with characters

;:!?«» are applied.

WARNING This feature requires import.

NOTE You can use transforms and interchar at the same time. Only the relevant key for

the current engine is taken into account.

5.9. Scripts

Babel provides no standard interface to select scripts, because they are best selected with

languages tied to them. In pdftex, scripts are indirectly managed by means of the low-level

\fontencoding, whose direct use is discouraged — even the Latin script may require

different encodings (i.e., sets of glyphs) depending on the language, and therefore such a

switch would be in a sense incomplete. Note the so-called Unicode fonts (in luatex and

xetex) do not improve the situation either. So, a font suited for Vietnamese is not

necessarily suited for, say, the romanization of Indic languages, and the fact it contains

glyphs for Modern Greek does not mean it includes them for Classic Greek.

52

https://latex3.github.io/babel/news/whats-new-in-babel-24.1.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.4.html

NOTE Some languages sharing the same script define macros to switch it (e.g.,

\textcyrillic), but be aware they may also set the language to a certain default. Even

the babel core defined \textlatin, but it was somewhat buggy because in some cases it

messed up encodings and fonts (for example, if the main Latin encoding was LY1), and

therefore it has been deprecated (but still defined for backwards compatibility).

The locales currently available cover the following scripts:

Arabic

Armenian

Bangla

Bengali

Cherokee

Coptic

Cyrillic

Devanagari

Egyptian

hieroglyphs

Ethiopic

Georgian

Glagolitic

Gothic

Greek

Gujarati

Gurmukhi

Han

Hebrew

Japanese

Kannada

Khmer

Khojki

Khudawadi

Korean

Lao

Latin

Malayalam

Myanmar

Nyiakeng Puachue

Hmong

N’Ko

Ol Chiki

Old Church Slavonic

Cyrillic

Oriya

Phoenician

Runic

Simplified

Sinhala

Sumero-Akkadian

Cuneiform

Tamil

Telugu

Thaana

Thai

Tibetan

Tifinagh

Traditional

Unified Canadian

Aboriginal Syllabics

Vai

Yi

\ensureascii{〈text〉}

3.9i This macro makes sure 〈text〉 is typeset with a LICR-savvy encoding in the ASCII

range. It is used to redefine \TeX and \LaTeX so that they are correctly typeset even with

LGR or X2 (the complete list is stored in \BabelNonASCII, which by default is LGR, LGI, X2,

OT2, OT3, OT6, LHE, LWN, LMA, LMC, LMS, LMU, but you can modify it). So, in some sense it fixes

the bug described in the previous paragraph.

If non-ASCII encodings are not loaded (or no encoding at all), it is no-op (also \TeX and

\LaTeX are not redefined); otherwise, \ensureascii switches to the encoding at the

beginning of the document if ASCII-savvy, or else the last ASCII-savvy encoding loaded. For

example, if you load LY1,LGR, then it is set to LY1, but if you load LY1,T2A it is set to T2A.

The symbol encodings TS1, T3, and TS3 are not taken into account, since they are not used

for “ordinary” text (they are stored in \BabelNonText, used in some special cases when no

Latin encoding is explicitly set).

The foregoing rules (which are applied “at begin document”) cover most of the cases. No

assumption is made on characters above 127, which may not follow the LICR conventions –

the goal is just to ensure most of the ASCII letters and symbols are the right ones.

5.10. Bidirectional and right-to-left text

No macros to select the writing direction are provided, either – writing direction is

intrinsic to each script and therefore it is best set by the language (which can be a dummy

one). Furthermore, there are in fact two right-to-left modes, depending on the language,

which differ in the way ‘weak’ numeric characters are ordered (e.g., Arabic %123 vs

Hebrew 123%).

WARNING The current code for text in luatex should be considered essentially stable, but,

of course, it is not bug-free and there can be improvements in the future, because

setting bidi text has many subtleties (see for example

<https://www.w3.org/TR/html-bidi/>). A basic stable version for other engines must wait.

This applies to text; there is a basic support for graphical elements, including the

picture environment (with pict2e) and pfg/tikz. Also, indexes and the like are under

study, as well as math (there are progresses in the latter, including amsmath and

mathtools too, but for example gatheredmay fail).

53

An effort is being made to avoid incompatibilities in the future (this one of the reasons

currently bidi must be explicitly requested as a package option, with a certain bidi

model, and also the layout options described below).

WARNING If characters to be mirrored are shown without changes with luatex, try with

the following line:

\babeladjust{bidi.mirroring=off}

There are some package options controlling bidi writing.

bidi=default | basic | basic-r | bidi-l | bidi-r

3.14 Selects the bidi algorithm to be used.

With default the bidi mechanism is just activated (by default it is not), but every change

must be marked up. In pdftex this is the only option. If the RL text consists of only letters

and punctuation, it will be fine in most cases, but numbers, for example, will be rendered

in the wrong order.

In luatex, the preferred method is basic, which supports both L and R text. basic-r was

a first attempt to create a bidi algorithm and provides a simple and fast method for R text

in some typical cases. (They are named basicmainly because they consider only the

intrinsic direction of scripts and weak directionality.)

In xetex, bidi-r and bidi-l resort to the package bidi (by Vafa Khalighi). For RL

documents use the former, and for LR ones use the latter.

WARNING This package patches heavily lots of macros and packages even if the RL script

is not the main one, which can lead to some surprising results, so for short and simple

texts (letters and punctuation) the defaultmethod is more often than not much

preferable.

There are samples on GitHub, under /required/babel/samples. See particularly

lua-bidibasic.tex and lua-secenum.tex.

EXAMPLE The following text comes from the Arabic Wikipedia (article about Arabia).

Copy-pasting some text from the Wikipedia is a good way to test this feature. Remember

basic is available in luatex only.

luatex
\documentclass[arabic]{article}

\usepackage[bidi=basic, provide=*]{babel}

\babelfont{rm}{FreeSerif}

\begin{document}

ـب)يقيرغلاا(ينيليهلارصعلاةليطبرعلاةريزجهبشتفرعدقو

ArabiaوأAravia)ةيقيرغلاابΑραβία(،ثلاثنامورلامدختسا

اهنألاإ،ةيبرعلاةريزجلاهبشنمقطانمثلاثىلع”Arabia“ـبتائداب

.مويلاهيلعفرعتاممربكأتناكًةقيقح

\end{document}

EXAMPLE With bidi=basic both L and R text can be mixed without explicit markup (the

latter will be necessary only in some special cases where the Unicode algorithm fails). It

is used much like bidi=basic-r, but with R text inside L text you may want to map the

font so that the correct features are in force. This is accomplished with an option in

\babelprovide, as illustrated:

54

\documentclass{book}

\usepackage[english, bidi=basic]{babel}

\babelprovide[onchar=ids fonts]{arabic}

\babelfont{rm}{Crimson}

\babelfont[*arabic]{rm}{FreeSerif}

\begin{document}

Most Arabic speakers consider the two varieties to be two registers

of one language, although the two registers can be referred to in

Arabic as رصعلاىحصف \textit{fuṣḥā l-ʻaṣr} (MSA) and

ثارتلاىحصف \textit{fuṣḥā t-turāth} (CA).

\end{document}

In this example, and thanks to onchar=ids fonts, any Arabic letter (because the

language is arabic) changes its font to that set for this language (here defined via

*arabic, because Crimson does not provide Arabic letters).

NOTE Boxes are “black boxes”. Numbers inside an \hbox (for example in a \ref) do not

know anything about the surrounding chars. So, \ref{A}-\ref{B} are not rendered in

the visual order A-B, but in the wrong one B-A (because the hyphen does not “see” the

digits inside the \hbox’es). If you need \ref ranges, the best option is to define a

dedicated macro like this (to avoid explicit direction changes in the body; here \texthe

must be defined to select the main language):

\newcommand\refrange[2]{\babelsublr{\texthe{\ref{#1}}-\texthe{\ref{#2}}}}

In the future a more complete method, reading recursively boxed text, may be added.

layout=sectioning | counters | lists | contents | footnotes | captions | columns | graphics | extras

3.16 To be expanded. Selects which layout elements are adapted in bidi documents,

including some text elements (except with options loading the bidi package, which

provides its own mechanism to control these elements). You may use several options with a

space-separated list, like layout=counters contents sectioning (in 3.85⊕ spaces are to

be preferred over dots, which was the former syntax). This list will be expanded in future

releases. Note not all options are required by all engines.

sectioning makes sure the sectioning macros are typeset in the main language, but with

the title text in the current language (see below \BabelPatchSection for further

details).

counters required in all engines (except luatex with bidi=basic) to reorder section

numbers and the like (e.g., 〈subsection〉.〈section〉); required in xetex and pdftex for

counters in general, as well as in luatex with bidi=default; required in luatex for

numeric footnote marks>9 with bidi=basic-r (but not with bidi=basic); note,

however, it can depend on the counter format.

With counters, \arabic is not only considered L text always (with \babelsublr, see

below), but also an “isolated” block which does not interact with the surrounding chars.

So, while 1.2 in R text is rendered in that order with bidi=basic (as a decimal

number), in \arabic{c1}.\arabic{c2} the visual order is c2.c1. Of course, you may

always adjust the order by changing the language, if necessary.

3.84⊕ Since \thepage is (indirectly) redefined, makeindex will reject many entries as

invalid. With counters* babel attempts to remove the conflicting macros.

55

https://latex3.github.io/babel/news/whats-new-in-babel-3.85.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.84.html

lists required in xetex and pdftex, but only in bidirectional (with both R and L

paragraphs) documents in luatex.

WARNING As of April 2019 there is a bug with \parshape in luatex (a TEX primitive)

which makes lists to be horizontally misplaced if they are inside a \vbox (like

minipage) and the current direction is different from the main one. A workaround

is to restore the main language before the box and then set the local one inside.

contents required in xetex and pdftex; in luatex toc entries are R by default if the main

language is R.

columns required in xetex and pdftex to reverse the column order (currently only the

standard two-column mode); in luatex they are R by default if the main language is R

(includingmulticol).

footnotes not required in monolingual documents, but it may be useful in bidirectional

documents (with both R and L paragraphs) in all engines; you may use alternatively

\BabelFootnote described below (what this option does exactly is also explained there).

captions is similar to sectioning, but for \caption; not required in monolingual

documents with luatex, but may be required in xetex and pdftex in some styles (support

for the latter two engines is still experimental) 3.18 .

tabular required in luatex for R tabular, so that the first column is the right one (it has

been tested only with simple tables, so expect some readjustments in the future);

ignored in pdftex or xetex (which will not support a similar option in the short term). It

patches an internal command, so it might be ignored by some packages and classes (or

even raise an error). 3.18 .

graphics modifies the picture environment so that the whole figure is L but the text is R.

It does not work with the standard picture, and pict2e is required. It attempts to do the

same for pgf/tikz. Somewhat experimental. 3.32 .

extras is used for miscellaneous readjustments which do not fit into the previous groups.

Currently redefines in luatex \underline and \LaTeX2e 3.19 .

EXAMPLE Typically, in an Arabic document you would need:

luatex
\usepackage[bidi=basic,

layout=counters tabular]{babel}

or

xetex
\usepackage[bidi=bidi,

layout=counters tabular]{babel}

\babelsublr{〈lr-text〉}

Digits in pdftexmust be marked up explicitly (unlike luatex with bidi=basic or

bidi=basic-r and, usually, xetex). This command is provided to set {〈lr-text〉} in L mode if

necessary. It’s intended for what Unicode calls weak characters, because words are best set

with the corresponding language. For this reason, there is no rl counterpart.

Any \babelsublr in explicit L mode is ignored. However, with bidi=basic and implicit L,

it first returns to R and then switches to explicit L. To clarify this point, consider, in an R

context:

RTL A ltr text \thechapter{} and still ltr RTL B

There are three R blocks and two L blocks, and the order is RTL B and still ltr 1 ltr text RTL

A. This is by design to provide the proper behavior in the most usual cases — but if you

need to use \ref in an L text inside R, the L text must be marked up explicitly; for example:

56

RTL A \foreignlanguage{english}{ltr text \thechapter{} and still ltr} RTL B

\localerestoredirs

3.86⊕ LuaTeX. This command resets the internal text, paragraph and body directions to

those of the current locale (if different). Sometimes changing these values directly can be

useful for some hacks, and this command helps in restoring the directions to the correct

ones. It can be used in > arguments of array, too.

\BabelPatchSection{〈section-name〉}

Mainly for bidi text, but it can be useful in other cases. \BabelPatchSection and the

corresponding option layout=sectioning takes a more logical approach (at least in many

cases) because it applies the global language to the section format (including the

\chaptername in \chapter), while the section text is still the current language. The latter is

passed to tocs and marks, too, and with sectioning in layout they both reset the “global”

language to the main one, while the text uses the “local” language.

With layout=sectioning all the standard sectioning commands are redefined (it also

“isolates” the page number in heads, for a proper bidi behavior), but with this command

you can set them individually if necessary (but note then tocs and marks are not touched).

\BabelFootnote{〈cmd〉}{〈local-language〉}{〈before〉}{〈after〉}

3.17 Something like:

\BabelFootnote{\parsfootnote}{\localename}{(}{)}

defines \parsfootnote so that \parsfootnote{note} is equivalent to:

\footnote{(\foreignlanguage{\localename}{note})}

but the footnote itself is typeset in the main language (to unify its direction). In addition,

\parsfootnotetext is defined. The option footnotes just does the following:

\BabelFootnote{\footnote}{\localename}{}{}%

\BabelFootnote{\localfootnote}{\localename}{}{}%

\BabelFootnote{\mainfootnote}{}{}{}

(which also redefine \footnotetext and define \localfootnotetext and

\mainfootnotetext). If the language argument is empty, then no language is selected

inside the argument of the footnote. Note this command is available always in bidi

documents, even without layout=footnotes.

EXAMPLE If you want to preserve directionality in footnotes and there are many footnotes

entirely in English, you can define:

\BabelFootnote{\enfootnote}{english}{}{.}

It adds a period outside the English part, so that it is placed at the left in the last line.

This means the dot at the end of the footnote text should be omitted.

5.11. Unicode character properties in luatex

3.32 Part of the babel job is to apply Unicode rules to some script-specific features based

on some properties. Currently, they are 3, namely, direction (i.e., bidi class), mirroring

glyphs, and line breaking for CJK scripts. These properties are stored in lua tables, which

you can modify with the following macro (for example, to set them for glyphs in the PUA).

57

https://latex3.github.io/babel/news/whats-new-in-babel-3.86.html

\babelcharproperty{〈char-code〉}[〈to-char-code〉]{〈property〉}{〈value〉}

3.32 Here, {〈char-code〉} is a number (with TEX syntax). With the optional argument, you

can set a range of values. There are three properties (with a short name, taken from

Unicode): direction (bc), mirror (bmg), linebreak (lb). The settings are global, and this

command is allowed only in vertical mode (the preamble or between paragraphs).

For example:

\babelcharproperty{`¿}{mirror}{`?}

\babelcharproperty{`-}{direction}{l} % or al, r, en, an, on, et, cs

\babelcharproperty{`)}{linebreak}{cl} % or id, op, cl, ns, ex, in, hy

Please, refer to the Unicode standard (Annex #9 and Annex #14) for the meaning of the

available codes. For example, en is ‘European number’ and id is ‘ideographic’.

3.39⊕ Another property is locale, which adds characters to the list used by onchar in

\babelprovide, or, if the last argument is empty, removes them. The last argument is the

locale name:

\babelcharproperty{`,}{locale}{english}

5.12. Tweaking some babel features

\babeladjust{〈key-value-list〉}

3.36⊕ Sometimes you might need to disable some babel features. Currently this macro

understands the following keys, with values on or off:

autoload.bcp47

bcp47.toname

bidi.mirroring

bidi.text

bidi.math

linebreak.sea

linebreak.cjk

justify.arabic

layout.tabular

layout.lists

The first four are documented elsewhere. The following are by default on, but with off

can disable some features: bidi.math (only preamble) changes for math or amsmath,

linebreak.sea, linebreak.cjk and justify.arabic the corresponding algorithms,

layout.tabular and layout.lists changes for tabular and lists. Some of them are

reverted only to some extent.

Other keys are:

autoload.options

autoload.bcp47.prefix

autoload.bcp47.options

prehyphenation.disable

interchar.disable

select.write

select.encoding

Most of them are documented elsewhere. With select.encoding=off, the encoding is

not set when loading a language on the fly with pdftex (only off).

prehyphenation.disable is by default nohyphenation, which means luatex

prehyphenation transforms are not applied if the current hyphenation rules are

nohyphenation; with off they are never disabled. interchar.disable takes the same

values, but for the xetex interchar mechanism.

For example, you can set \babeladjust{bidi.text=off} if you are using an alternative

algorithm or with large sections not requiring it. Use with care, because these options do

not deactivate other related options (like paragraph direction with bidi.text).

6. Relation with other packages

6.1. Compatibility

There are compatibility issues with the following packages.

58

https://latex3.github.io/babel/news/whats-new-in-babel-3.39.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.36.html

polyglossia This package is not compatible at all with babel. They should never

be used together, because macros are different, and even those with

the same name don’t behave in the same way. Also, languages are

organized quite differently (babel treats all locales on an equal foot-

ing).

tikz/pgf There are some issues with shorthands, which are usually solved

with \usetikzlibrary{babel}.

cleveref Because of a long standing bug in this package, some languages can

raise an error (particularly spanish and greek).

natbib Load it before babel.

bidi Babel relies on bidi with xetex and bidi=bidi, which has amultitude

of incompatibilities. Please, refer to its manual, and remember for

short and simple texts you can rely on bidi=default instead.

6.2. Related packages

The following packages can be useful in multilingual contexts (the list is far from

exhaustive):

babelbib Multilingual bibliographies.

biblatex Programmable bibliographies and citations.

bicaption Bilingual captions.

csquotes Logical markup for quotes.

hyphsubst Selects a different set of patterns for a language.

iflang Tests correctly the current language.

microtype Adjusts the typesetting according to some languages (kerning and spacing).

Ligatures can be disabled. Search in its manual for babel and

DeclareMicrotypeBabelHook.

mkpattern Generates hyphenation patterns.

siunitx Typesetting of numbers and physical quantities.

substitutefont Combines fonts in several encodings.

tracklang Tracks which languages have been requested.

translator An open platform for packages that need to be localized.

ucharclasses (xetex) Switches fonts when you switch from one Unicode block to another.

Note it doesn’t work with RTL scripts.

zhspacing Spacing for CJK documents in xetex.

6.3. Indexing

For multilingual indexing, see upmendex and xindex, currently preferred to xindy.

7. Tentative and experimental code

See the code section for \foreignlanguage* (a new starred version of \foreignlanguage).

For old and deprecated functions, see the babel site.

Options for locales loaded on the fly

3.51⊕ \babeladjust{ autoload.options = ... } sets the options when a language is

loaded on the fly. 24.14⊕ By default, it is import, which defines captions, date, numerals,

etc., but ignores the code in the tex file (for example, extended numerals in Greek). It can

be set to empty.

Labels

3.48⊕ There is some work in progress for babel to deal with labels, both with the

relation to captions (chapters, part), and how counters are used to define them. It is still

somewhat tentative because it is far from trivial – see the babel site for further details.

59

https://latex3.github.io/babel/news/whats-new-in-babel-3.51.html
https://latex3.github.io/babel/news/whats-new-in-babel-24.14.html
https://latex3.github.io/babel/news/whats-new-in-babel-3.48.html

8. Loading language hyphenation rules with language.dat

TEX and most engines based on it (pdfTEX, xetex, ε-TEX, the main exception being luatex)

require hyphenation patterns to be preloaded when a format is created (e.g., LATEX, XeLATEX,

pdfLATEX). babel provides a tool which has become standard in many distributions and

based on a “configuration file” named language.dat. The exact way this file is used

depends on the distribution, so please, read the documentation for the latter (note also

some distributions generate the file with some tool).

3.9q With luatex, however, patterns are loaded on the fly when requested by the

language (except the “0th” language, typically english, which is preloaded always). You

may want to have a local language.dat for a particular project (for example, a book on

Chemistry). The loader for lua(e)tex is slightly different as it’s not based on babel, but on

etex.src; however, babel reloads the data so that it works as expected.

8.1. Format

In that file the person who maintains a TEX environment has to record for which languages

he has hyphenation patterns and in which files these are stored (this was because different

operating systems sometimes used very different file-naming conventions, but this issue is

not currently so serious as before). When hyphenation exceptions are stored in a separate

file this can be indicated by naming that file after the file with the hyphenation patterns.

The file can contain empty lines and comments, as well as lines which start with an

equals (=) sign. Such a line will instruct LATEX that the hyphenation patterns just processed

have to be known under an alternative name. Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.

english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands

german hyphen.ger

You may also set the font encoding that the patterns are intended for by following the

language name by a colon and the encoding code. For example:

german:T1 hyphenT1.ger

german hyphen.ger

With the previous settings, if the encoding when the language is selected is T1 then the

patterns in hyphenT1.ger are used, but otherwise use those in hyphen.ger (note the

encoding can be set in \extras〈language〉).

9. The interface between the core of babel and the language

definition files

The language definition files (ldf) must conform to a number of conventions, because these

files have to fill in the gaps left by the common code in babel.def, i.e., the definitions of

the macros that produce texts. Also the language-switching possibility which has been built

into the babel system has its implications.

The following assumptions are made:

• Some of the language-specific definitions might be used by plain TEX users, so the files

have to be coded so that they can be read by both LATEX and plain TEX. The current

format can be checked by looking at the value of the macro \fmtname.

60

• The common part of the babel system redefines a number of macros and environments

(defined previously in the document style) to put in the names of macros that replace

the previously hard-wired texts. These macros have to be defined in the language

definition files.

• The language definition files must define five macros, used to activate and deactivate

the language-specific definitions. These macros are \〈language〉hyphenmins,
\captions〈language〉, \date〈language〉, \extras〈language〉 and
\noextras〈language〉(the last two may be left empty); where 〈language〉 is either the
name of the language definition file or the name of the LATEX option that is to be used.

These macros and their functions are discussed below. You must define all or none for a

language; defining, say, \date〈language〉 but not \captions〈language〉 does not raise an
error but can lead to unexpected results.

• When a language definition file is loaded, it can define \l@〈language〉 to be a dialect of
\language0 when \l@〈language〉 is undefined.

• Language names must be all lowercase. If an unknown language is selected, babel will

attempt setting it after lowercasing its name.

• The semantics of modifiers is not defined (on purpose). In most cases, they will just be

simple separated options (e.g., spanish), but a language might require, say, a set of

options organized as a tree with suboptions (in such a case, the recommended

separator is /). How modifiers (saved in \BabelModifiers) are handled are left to

language styles; they can use \in@, loop them with \@for or load keyval, for example.

Some recommendations:

• The preferred shorthand is ", which is not used in LATEX (quotes are entered as `` and

''). Other good choices are characters which are not used in a certain context (e.g., = in

an ancient language). Note however =, <, >, : and the like can be dangerous, because

they may be used as part of the syntax of some elements (numeric expressions,

key/value pairs, etc.).

• Captions should not contain shorthands or encoding-dependent commands (the latter is

not always possible, but should be clearly documented). They should be defined using

the LICR. You may also use the new tools for encoded strings, described below.

• Avoid adding things to \noextras〈language〉 except for umlauthigh and friends,

\bbl@deactivate, \bbl@(non)frenchspacing, and language-specific macros. Use

always, wherever possible, \babel@save and \babel@savevariable (except if you still

want to have access to the previous value). Do not reset a macro or a setting to a

hardcoded value. Never. Instead save its value in \extras〈language〉.

• Do not switch scripts. If you want to make sure a set of glyphs is used, switch either the

font encoding (low-level) or the language (high-level, which in turn may switch the font

encoding). Usage of things like \latintext is deprecated (but not removed, for

backward compatibility).

• Please, for “private” internal macros do not use the \bbl@ prefix. It is used by babel and

it can lead to incompatibilities.

There are no special requirements for documenting your language files. Just provide a

standalone document suited to your needs, as well as other files you think can be useful. A

PDF and a “readme” are strongly recommended.

9.1. Guidelines for contributed languages

Currently, the easiest way to contribute a new language is by taking one of the 500 or so ini

templates available on GitHub as a basis. Just make a pull request or download it, and then,

after filling out the fields, sent it to me. Feel free to ask for help or to make feature requests.

61

As to ldf files, now language files are “outsourced” and are located in a separate

directory (/macros/latex/contrib/babel-contrib), so that they are contributed directly

to CTAN (please, do not send to me language styles just to upload them to CTAN).

Of course, placing your style files in this directory is not mandatory, but if you want to do

it, here are a few guidelines.

• Do not hesitate stating on the file heads you are the author and the maintainer, if you

actually are. There is no need to state the babelmaintainer(s) as author(s) if they have

not contributed significantly to your language files.

• Fonts are not strictly part of a language, so they are best placed in the corresponding

TeX tree. This includes not only tfm, vf, ps1, otf, mf files and the like, but also fd ones.

• Font and input encodings are usually best placed in the corresponding tree, too, but

sometimes they belong more naturally to the babel style. Note you may also need to

define a LICR (TLC3, I, 757f.).

• Babel ldf files may just interface a framework, as it happens often with Oriental

languages/scripts. This framework is best placed in its own directory.

The following page provides a starting point for ldf files:

http://www.texnia.com/incubator.html. See also

https://latex3.github.io/babel/guides/list-of-locale-templates.html.

If you need further assistance and technical advice in the development of language

styles, I will be happy to help you. And of course, you can make any suggestion you like.

9.2. Basic macros

In the core of the babel system, several macros are defined for use in language definition

files. Their purpose is to make a new language known. The first two are related to

hyphenation patterns.

\addlanguage The macro \addlanguage is a non-outer version of the macro

\newlanguage, defined in plain.tex version 3.x. Here “language” is used in the TEX sense

of set of hyphenation patterns.

\adddialect The macro \adddialect can be used when two languages can (or must) use

the same hyphenation patterns. This can also be useful for languages for which no patterns

are preloaded in the format. In such cases the default behavior of the babel system is to

define this language as a ‘dialect’ of the language for which the patterns were loaded as

\language0. Here “language” is used in the TEX sense of set of hyphenation patterns, while

“dialect”, which is misnomer, refers just to a language with the same hyphenation patterns

as another (there is no relation with its linguistic meaning).

\<lang>hyphenmins The macro \〈language〉hyphenmins is used to store the values of the

\lefthyphenmin and \righthyphenmin. Redefine this macro to set your own values, with

two numbers corresponding to these two parameters. For example:

\renewcommand\spanishhyphenmins{34}

(Assigning \lefthyphenmin and \righthyphenmin directly in \extras〈language〉 has no
effect.) This is a low-level setting. In documents you should rely on \babelhyphenmins.

\providehyphenmins The macro \providehyphenmins should be used in the language

definition files to set \lefthyphenmin and \righthyphenmin. This macro will check

whether these parameters were provided by the hyphenation file before it takes any

action. If these values have been already set, this command is ignored (currently, default

pattern files do not set them).

\captions〈language〉 The macro \captions〈language〉 defines the macros that hold the

texts to replace the original hard-wired texts.

\date〈language〉 The macro \date〈language〉 defines \today.
\extras〈language〉 The macro \extras〈language〉 contains all the extra definitions

needed for a specific language. This macro, like the following, is a hook – you can add

things to it, but it must not be used directly.

62

\noextras〈language〉 Because we want to let the user switch between languages, but we

do not know what state TEX might be in after the execution of \extras〈language〉, a macro

that brings TEX into a predefined state is needed. It will be no surprise that the name of this

macro is \noextras〈language〉.
\bbl@declare@ttribute This is a command to be used in the language definition files

for declaring a language attribute. It takes three arguments: the name of the language, the

attribute to be defined, and the code to be executed when the attribute is to be used.

\main@language To postpone the activation of the definitions needed for a language until

the beginning of a document, all language definition files should use \main@language

instead of \selectlanguage. This will just store the name of the language, and the proper

language will be activated at the start of the document.

\ProvidesLanguage The macro \ProvidesLanguage should be used to identify the

language definition files. Its syntax is similar to the syntax of the LATEX command

\ProvidesPackage.

\LdfInit The macro \LdfInit performs a couple of standard checks that must be made

at the beginning of a language definition file, such as checking the category code of the

@-sign, preventing the ldf file from being processed twice, etc.

\ldf@quit The macro \ldf@quit does work needed if an ldf file was processed earlier.

This includes resetting the category code of the @-sign, preparing the language to be

activated at \begin{document} time, and ending the input stream.

\ldf@finish The macro \ldf@finish does work needed at the end of each ldf file. This

includes resetting the category code of the @-sign, loading a local configuration file, and

preparing the language to be activated at \begin{document} time.

\loadlocalcfg After processing a language definition file, LATEX can be instructed to load

a local configuration file. This file can, for instance, be used to add strings to

\captions〈language〉 to support local document classes. The user will be informed that

this configuration file has been loaded. This macro is called by \ldf@finish.

9.3. Skeleton

Here is the basic structure of an ldf file, with a language, a dialect and an attribute. Strings

are best defined using the method explained in sec. 9.8 (babel 3.9 and later).

\ProvidesLanguage{<language>}

[2016/04/23 v0.0 <Language> support from the babel system]

\LdfInit{<language>}{captions<language>}

\ifx\undefined\l@<language>

\@nopatterns{<Language>}

\adddialect\l@<language>0

\fi

\adddialect\l@<dialect>\l@<language>

\bbl@declare@ttribute{<language>}{<attrib>}{%

\expandafter\addto\expandafter\extras<language>

\expandafter{\extras<attrib><language>}%

\let\captions<language>\captions<attrib><language>}

\providehyphenmins{<language>}{\tw@\thr@@}

\StartBabelCommands*{<language>}{captions}

\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<language>}{date}

\SetString\monthiname{<name of first month>}

% More strings

63

\StartBabelCommands*{<dialect>}{captions}

\SetString\chaptername{<chapter name>}

% More strings

\StartBabelCommands*{<dialect>}{date}

\SetString\monthiname{<name of first month>}

% More strings

\EndBabelCommands

\addto\extras<language>{}

\addto\noextras<language>{}

\let\extras<dialect>\extras<language>

\let\noextras<dialect>\noextras<language>

\ldf@finish{<language>}

NOTE If for some reason you want to load a package in your style, you should be aware it

cannot be done directly in the ldf file, but it can be delayed with \AtEndOfPackage.

Macros from external packages can be used inside definitions in the ldf itself (for

example, \extras〈language〉), but if executed directly, the code must be placed inside

\AtEndOfPackage. A trivial example illustrating these points is:

\AtEndOfPackage{%

\RequirePackage{dingbat}% Delay package

\savebox{\myeye}{\eye}}% And direct usage

\newsavebox{\myeye}

\newcommand\myanchor{\anchor}% But OK inside command

9.4. Support for active characters

In quite a number of language definition files, active characters are introduced. To

facilitate this, some support macros are provided.

\initiate@active@char Used in language definition files to instruct LATEX to give a

character the category code ‘active’. When a character has been made active it will remain

that way until the end of the document. Its definition may vary.

\bbl@activate \bbl@deactivate Used to change the way an active character expands.

\bbl@activate ‘switches on’ the active behavior of the character. \bbl@deactivate lets

the active character expand to its former (mostly) non-active self.

\declare@shorthand Used to define the various shorthands. It takes three arguments:

the name for the collection of shorthands this definition belongs to; the character

(sequence) that makes up the shorthand, i.e., ~ or "a; and the code to be executed when the

shorthand is encountered. (It does not raise an error if the shorthand character has not

been “initiated”.)

\bbl@add@special The TEXbook states: “Plain TEX includes a macro called \dospecials

that is essentially a set macro, representing the set of all characters that have a special

category code.” [4, p. 380] It is used to set text ‘verbatim’. To make this work if more

characters get a special category code, you have to add this character to the macro

\dospecials. LATEX adds another macro called \@sanitize representing the same

character set, but without the curly braces. The macros \bbl@add@special〈char〉 add the

character 〈char〉 to these two sets.

\@safe@activestrue \@safe@activesfalse Enables and disables the “safe” mode. It is a

tool for package and class authors. See the description below.

9.5. Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefore a

mechanism for saving (and restoring) the original definition of those macros is provided.

64

We provide two macros for this.10

\babel@save To save the current meaning of any control sequence, the macro

\babel@save is provided. It takes one argument, 〈csname〉, the control sequence for which

the meaning has to be saved.

\babel@savevariable A second macro is provided to save the current value of a

variable. In this context, anything that is allowed after the \the primitive is considered to

be a variable. The macro takes one argument, the 〈variable〉.
The effect of the preceding macros is to append a piece of code to the current definition

of \originalTeX. When \originalTeX is expanded, this code restores the previous

definition of the control sequence or the previous value of the variable.

9.6. Support for extending macros

\addto The macro \addto{〈control sequence〉}{〈TEX code〉} can be used to extend the

definition of a macro. The macro need not be defined (i.e., it can be undefined or \relax).

This macro can, for instance, be used in adding instructions to a macro like

\extrasenglish.

Be careful when using this macro, because depending on the case the assignment can be

either global (usually) or local (sometimes). That does not seem very consistent, but this

behavior is preserved for backward compatibility. If you are using etoolbox, by Philipp

Lehman, consider using the tools provided by this package instead of \addto.

9.7. Macros common to a number of languages

\bbl@allowhyphens In several languages compound words are used. This means that

when TEX has to hyphenate such a compound word, it only does so at the ‘-’ that is used in

such words. To allow hyphenation in the rest of such a compound word, the macro

\bbl@allowhyphens can be used.

\allowhyphens Same as \bbl@allowhyphens, but does nothing if the encoding is T1. It is

intended mainly for characters provided as real glyphs by this encoding but constructed

with \accent in OT1.

Note the previous command (\bbl@allowhyphens) has different applications (hyphens

and discretionaries) than this one (composite chars). Note also prior to version 3.7,

\allowhyphens had the behavior of \bbl@allowhyphens.

\set@low@box For some languages, quotes need to be lowered to the baseline. For this

purpose the macro \set@low@box is available. It takes one argument and puts that

argument in an \hbox, at the baseline. The result is available in \box0 for further

processing.

\save@sf@q Sometimes it is necessary to preserve the \spacefactor. For this purpose

the macro \save@sf@q is available. It takes one argument, saves the current spacefactor,

executes the argument, and restores the spacefactor.

\bbl@frenchspacing \bbl@nonfrenchspacing Those commands can be used to properly

switch French spacing on and off.

NOTE With ldf files, babel does not take into account \normalsfcodes and (non-)French

spacing is not always properly (un)set by languages However, problems are unlikely to

happen and therefore this part remains untouched. With ini files, this issue has been

addressed.

9.8. Encoding-dependent strings

3.9a Babel 3.9 provides a way of defining strings in several encodings, intended mainly

for luatex and xetex, although the old way of defining/switching strings still works and it’s

used by default.

It consists in a series of blocks started with \StartBabelCommands. The last block is

closed with \EndBabelCommands. Each block is a single group (i.e., local declarations apply

10This mechanism was introduced by Bernd Raichle.

65

until the next \StartBabelCommands or \EndBabelCommands). An ldfmay contain several

series of this kind.

Thanks to this new feature, string values and string language switching are not mixed

any more. Furthermore, strings do not need to be wrapped with formatting commands

(e.g., to select the writing direction) because babel takes care of it automatically. (See also

\setlocalecaption.)

\StartBabelCommands{〈language-list〉}{〈category〉}[〈selector〉]

The 〈language-list〉 specifies which languages the block is intended for. A block is taken

into account only if the \CurrentOption is listed here. Alternatively, you can define

\BabelLanguages to a comma-separated list of languages to be defined (if undefined,

\StartBabelCommands sets it to \CurrentOption). You may write \CurrentOption as the

language, but this is discouraged – an explicit name (or names) is much better and clearer.

A “selector” selects a group of definition that are to be used, optionally followed by extra

info about the encodings to be used. The name unicodemust be used for luatex and xetex.

Without a selector, the LICR representation (i.e., with macros like \~{n} instead of ñ) is

assumed.

If a string is set several times (because several blocks are read), the first one takes

precedence (i.e., it works much like \providecommand).

Encoding info is charset= followed by a charset, which, if given, sets how the strings

should be translated to the internal representation used by the engine, typically utf8,

which is the only value supported currently (default is no translations). Note charset is

applied by luatex and xetex when reading the file, not when the macro or string is used in

the document.

A list of font encodings which the strings are expected to work with can be given after

fontenc= (separated with spaces, if two or more) – recommended, but not mandatory,

although blocks without this key are not taken into account if you have requested

strings=encoded.

Blocks without a selector are read always. They provide fallback values, and therefore

they must be the last ones; they should be provided always if possible and all strings

should be defined somehow inside it; they can be the only blocks (mainly LGC scripts using

the LICR).

The 〈category〉 is either captions, date or extras. You must stick to these three

categories, even if no error is raised when using other names.11 It may be empty, too, but in

such a case using \SetString is an error.

\StartBabelCommands{language}{captions}

[unicode, fontenc=TU EU1 EU2, charset=utf8]

\SetString{\chaptername}{utf8-string}

\StartBabelCommands{language}{captions}

\SetString{\chaptername}{ascii-maybe-LICR-string}

\EndBabelCommands

A real example can be:

\StartBabelCommands{austrian}{date}

[unicode, fontenc=TU, charset=utf8]

\SetString\monthiname{Jänner}

\StartBabelCommands{german,austrian}{date}

[unicode, fontenc=TU, charset=utf8]

\SetString\monthiiiname{März}

\StartBabelCommands{austrian}{date}

11In future releases further categories may be added.

66

\SetString\monthiname{J\"{a}nner}

\StartBabelCommands{german}{date}

\SetString\monthiname{Januar}

\StartBabelCommands{german,austrian}{date}

\SetString\monthiiname{Februar}

\SetString\monthiiiname{M\"{a}rz}

\SetString\monthivname{April}

\SetString\monthvname{Mai}

\SetString\monthviname{Juni}

\SetString\monthviiname{Juli}

\SetString\monthviiiname{August}

\SetString\monthixname{September}

\SetString\monthxname{Oktober}

\SetString\monthxiname{November}

\SetString\monthxiiname{Dezenber}

\SetString\today{\number\day.~%

\csname month\romannumeral\month name\endcsname\space

\number\year}

\StartBabelCommands{german,austrian}{captions}

\SetString\prefacename{Vorwort}

[etc.]

\EndBabelCommands

When used in ldf files, previous values of \〈category〉〈language〉 are overridden, which

means the old way to define strings still works and used by default (to be precise, is first set

to undefined and then strings are added). However, when used in the preamble or in a

package, new settings are added to the previous ones, if the language exists (in the babel

sense, i.e., if \date〈language〉 exists).

NOTE The package option strings introduced in version 3.9 (around 2013) when Unicode

engines were still of marginal use, is now deprecated.

NOTE Captions and other strings defined in ini files (in other words, when a locale is

loaded with \babelprovide) are internally set with the help of these macros.

\StartBabelCommands * {〈language-list〉}{〈category〉}[〈selector〉]

The starred version just forces strings to take a value – if not set as package option

(which is now deprecated), then the default for the engine is used. This is not done by

default to prevent backward incompatibilities, but if you are creating a new language this

version is better. It’s up to the maintainers of the current languages to decide if using it is

appropriate.

\EndBabelCommands

Marks the end of the series of blocks.

\AfterBabelCommands{〈code〉}

The code is delayed and executed at the global scope just after \EndBabelCommands.

\SetString{〈macro-name〉}{〈string〉}

Adds 〈macro-name〉 to the current category, and defines globally 〈lang-macro-name〉 to
〈code〉 (after applying the transformation corresponding to the current charset or defined

with the hook stringprocess).

Use this command to define strings, without including any “logic” if possible, which

should be a separate macro. See the example above for the date.

67

\SetStringLoop{〈macro-name〉}{〈string-list〉}

A convenient way to define several ordered names at once. For example, to define

\abmoniname, \abmoniiname, etc. (and similarly with abday):

\SetStringLoop{abmon#1name}{en,fb,mr,ab,my,jn,jl,ag,sp,oc,nv,dc}

\SetStringLoop{abday#1name}{lu,ma,mi,ju,vi,sa,do}

#1 is replaced by the roman numeral.

\SetHyphenMap{〈to-lower-macros〉}

3.9g Case mapping for hyphenation is handled with \SetHyphenMap and controlled with

the package option hyphenmap.

There are three helper macros to be used inside \SetHyphenMap:

• \BabelLower{〈uccode〉}{〈lccode〉} is similar to \lccode but it’s ignored if the char has

been set and saves the original lccode to restore it when switching the language (except

with hyphenmap=first).

• \BabelLowerMM{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode-from〉} loops though the

given uppercase codes, using the step, and assigns them the lccode, which is also

increased (MM stands formany-to-many).

• \BabelLowerMO{〈uccode-from〉}{〈uccode-to〉}{〈step〉}{〈lccode〉} loops though the given

uppercase codes, using the step, and assigns them the lccode, which is fixed (MO stands

formany-to-one).

An example is (which is redundant, because these assignments are done by both luatex and

xetex):

\SetHyphenMap{\BabelLowerMM{"100}{"11F}{2}{"101}}

NOTE This macro is not intended to fix wrong mappings done by Unicode (which are the

default in both luatex and xetex) – if an assignment is wrong, fix it directly.

10. Acknowledgements

In the initial stages of the development of babel, Bernd Raichle provided many helpful

suggestions and Michel Goossens supplied contributions for many languages. Ideas from

Nico Poppelier, Piet van Oostrum and many others have been used. Paul Wackers and

Werenfried Spit helped find and repair bugs.

More recently, there are significant contributions by Salim Bou, Ulrike Fischer, Loren

Davis and Udi Fogiel.

Barbara Beeton has helped in improving the manual.

There are also many contributors for specific languages, which are mentioned in the

respective files. Without them, babel just wouldn’t exist.

References

[1] Huda Smitshuijzen Abifares, Arabic Typography, Saqi, 2001.

[2] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of national LATEX

styles, TUGboat 10 (1989) #3, pp. 401–406.

[3] Yannis Haralambous, Fonts & Encodings, O’Reilly, 2007.

[4] Donald E. Knuth, The TEXbook, Addison-Wesley, 1986.

68

[5] Jukka K. Korpela, Unicode Explained, O’Reilly, 2006.

[6] Leslie Lamport, LATEX, A document preparation System, Addison-Wesley, 1986.

[7] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.

[8] Ken Lunde, CJKV Information Processing, O’Reilly, 2nd ed., 2009.

[9] Edward M. Reingold and Nachum Dershowitz, Calendrical Calculations: The Ultimate

Edition, Cambridge University Press, 2018

[10] Hubert Partl, German TEX, TUGboat 9 (1988) #1, pp. 70–72.

[11] Joachim Schrod, International LATEX is ready to use, TUGboat 11 (1990) #1, pp. 87–90.

[12] Apostolos Syropoulos, Antonis Tsolomitis and Nick Sofroniu, Digital typography using

LATEX, Springer, 2002, pp. 301–373.

[13] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst, SDU Uitgeverij

(’s-Gravenhage, 1988).

69

	Contents
	1 The basic user interface
	1.1 Monolingual documents: the ‘classical’ way
	1.2 Monolingual documents: the ‘modern’ way
	1.3 Mostly monolingual documents: lazy loading
	1.4 Multilingual documents: the ‘classical’ way
	1.5 Multilingual documents: the ‘modern’ way
	1.6 Languages supported by babel in the ‘classical’ mode
	1.7 Languages supported by babel in the ‘modern’ mode
	1.8 Fonts in Unicode engines
	1.9 Basic language selectors
	1.10 Auxiliary language selectors
	1.11 Plain

	2 More on language loading and selection
	2.1 A couple of tools
	2.2 Accessing language info
	2.3 Package options
	2.4 The base option
	2.5 provide and \babelprovide – ini files
	2.6 Selection based on BCP 47 tags

	3 Tailoring, customizing and modifying a language
	3.1 Captions
	3.2 Modifiers
	3.3 Language attributes
	3.4 Casing
	3.5 Modifying and adding values to ini files
	3.6 Hooks
	3.7 Manage auxiliary files
	3.8 Code based on the selector
	3.9 Presets

	4 Creating a language
	5 Locale features
	5.1 Hyphenation and line breaking – 1. Commands
	5.2 Hyphenation and line breaking – 2. ‘Provide’ options
	5.3 Shorthands – 1. Commands
	5.4 Shorthands – 2. Package options
	5.5 Digits and counters
	5.6 Dates
	5.7 Transforms
	5.8 Support for xetex interchar
	5.9 Scripts
	5.10 Bidirectional and right-to-left text
	5.11 Unicode character properties in luatex
	5.12 Tweaking some babel features

	6 Relation with other packages
	6.1 Compatibility
	6.2 Related packages
	6.3 Indexing

	7 Tentative and experimental code
	8 Loading language hyphenation rules with language.dat
	8.1 Format

	9 The interface between the core of babel and the language definition files
	9.1 Guidelines for contributed languages
	9.2 Basic macros
	9.3 Skeleton
	9.4 Support for active characters
	9.5 Support for saving macro definitions
	9.6 Support for extending macros
	9.7 Macros common to a number of languages
	9.8 Encoding-dependent strings

	10 Acknowledgements
	References

