
numerica-tables
version 3.2.0

Andrew Parsloe
(ajparsloe@gmail.com)

November 20, 2024

ajparsloe@gmail.com

Abstract

The numerica-tables package enables the creation of multi-row, multi-column
tables of values of mathematical functions. Key–value assignments allow pre-
sentation in a wide variety of table styles, both vertically by column or hori-
zontally by row, within the ‘formal table’ framework of the booktabs package.
numerica-tables requires the prior loading of the numerica package.

• This document applies to version 3.2.0 of numerica-tables and requires
the booktabs package.

• Version 3 of numerica needs to be loaded before numerica-tables;
(numerica requires amsmath and mathtools).

• I refer many times in this document to tables included in Handbook of
Mathematical Functions, edited by Milton Abramowitz and Irene A. Ste-
gun, Dover, 1965, and referenced as HMF.

• Version 3.2.0 of numerica-tables

– adds a setting transpose to convert a table with function values in
columns into a table with function values in rows;

– adds the package options rules and norules to specify the default
pattern of horizontal rules;

– adds new settings and enhances existing settings to adjust the appear-
ance, size and positioning of items in both the row variable column
and the header row;

– enhances and adjusts elements of fraction form output (e.g. with a
‘semi-verbatim’ setting);

– fixes a bug when tabulating factorials;
– updates documentation.

• Version 3.1.0 of numerica-tables

– adds an index to the documentation;
– adds the ability to round table entries to different values.

• Version 3.0.0 of numerica-tables

– adds the ability to use as row variable values numbers or expressions
from a comma list, a macro, a file, or a step function, to be displayed
either as values or verbatim;

– adds the ability to suppress the header row;
– is compatible with the additional features of numerica version 3.0.0,

including the decimal comma and fraction-form output.

1

Contents

1 Introduction 4
1.1 Package options . 4
1.2 Table structure . 5

1.2.1 Transposed tables . 5
1.2.2 tabular environment . 6

1.3 Shared syntax . 6

2 \nmcTabulate settings 8
2.1 Row variable settings . 8

2.1.1 Row variable specification: uniform case 8
2.1.1.1 Rounding: rround 11

2.1.2 Row variable specification: non-uniform case 12
2.1.2.1 rfunc . 12
2.1.2.2 rdata, rfile, rdelim, rverb 13
2.1.2.3 Fraction-form values 15

2.1.3 Formatting the row variable column & header 15
2.1.3.1 Position in the table: rpos 16
2.1.3.2 Alignment: ralign 17
2.1.3.3 Font: rfont . 18
2.1.3.4 Row variable header: rhead 19
2.1.3.5 Nudging the header: rhnudge 19
2.1.3.6 Font size of the header: rhsize 20
2.1.3.7 rmath . 20
2.1.3.8 rvar’, rhead’, rhnudge’ 20

2.2 Column-variable settings . 21
2.2.1 Rounding: chround . 23
2.2.2 Column header formatting 23

2.2.2.1 Single-column header 23
2.2.2.2 Multi-column header 24
2.2.2.3 diagbox, slashbox 25
2.2.2.4 Built-in styles: chstyle 26
2.2.2.5 User-defined header: chead 27
2.2.2.6 Alignment: calign 27
2.2.2.7 Nudging header entries: chnudge 27

2

2.2.2.8 Math style: chmath 29
2.2.2.9 Font size: chsize 29

2.3 Multiple functions in a single table 30
2.4 Whole-of-table formatting . 31

2.4.1 Title for function-value columns: ctitle 31
2.4.2 Between header & title: csubttl 33
2.4.3 Suppress/show header row 34
2.4.4 Footer row: foot . 34
2.4.5 Horizontal rules: rules 35

2.4.5.1 Header and footer rules 35
2.4.5.2 Title and subtitle rules 36
2.4.5.3 Trim and thickness of rules 37

2.4.6 Second row variable column: rpos=3,4 37
2.4.7 Separating blocks of rows: rbloc 39

2.4.7.1 Adjusting the extra space rblocsep 40
2.4.8 ‘Horizontal’ tables: transpose 40
2.4.9 Table placement . 41

2.4.9.1 Vertical alignment 41
2.5 Formatting function values . 42

2.5.1 Trailing optional argument 42
2.5.1.1 Fraction-form output 42
2.5.1.2 Scientific notation 43

2.5.2 The t option . 44
2.5.2.1 Padding the exponent: (pad) 44
2.5.2.2 Accommodating signs in the t-notation 45

2.5.3 Indicating signs outside the t-notation 46
2.5.4 Cell-, row-, column-dependent rounding 47
2.5.5 Differences: diffs . 48
2.5.6 Formatting special values: Q? and A! 49

2.5.6.1 Star option: \nmcTabulate* 50
2.6 Other matters . 52

2.6.1 Nesting . 52
2.6.2 Saving tables to file . 53
2.6.3 Viewing the LATEX form 53

3 Reference summary 55
3.1 Commands defined in numerica-tables 55
3.2 Settings for \nmcTabulate . 55

Index 59

3

Chapter 1

Introduction

Entering

\usepackage[<options>]{numerica}
\usepackage[<options>]{numerica-tables}

in the preamble of a document gives access to a command for creating tables
of function values in a wide variety of styles. Contrary to previous practice,
from version 3.0.0 of numerica-tables, the numerica package is not loaded
automatically but must be loaded explicitly (as above), with options if desired,
before numerica-tables. It is essential that the version of numerica loaded is
version 3.

All tables are ‘formal tables’ in the sense of the booktabs package, which
is loaded automatically. Such tables have no vertical rules and few horizontal
rules. Quoting from the documentation for that package:

1. Never, ever use vertical rules.

2. Never use double rules.

1.1 Package options
New with version 3.2 of numerica-tables are the package options rules and
norules, and Q?*, which is more complicated and discussed later (§2.5.6.1). The
rules option determines which (if any) horizontal rules are drawn in a table if
none are explicitly set for that table. Because most tables in this document are
set amongst text, they are delimited by top and bottom rules, and one beneath
the header row. For consistency with earlier versions, ‘out of the box’ the rules
package option is initialized to rules=ThB.

For the user this may not be what is wanted. You may prefer by default
to insert a rule only beneath the header row of your tables in which case the
package option would be rules=h. For other possible values for the package
option see the identical values of the rules setting discussed in §2.4.5. If, as a

4

default, you want no rules at all in your tables, you can either give rules an
empty value (rules=) or use the norules package option:

\usepackage[norules]{numerica-tables}

1.2 Table structure
I take as my source of models of mathematical tables those presented in Hand-
book of Mathematical Functions, edited by Milton Abramowitz and Irene A.
Stegun, Dover, 1965, not because the typesetting is elegant (it often is not) but
because HMF displays a wide variety of table styles. The editors of that volume
were faced with a host of different problems requiring a host of different solu-
tions. The \nmcTabulate command of numerica-tables aims to reproduce
most of those different solutions, within booktabs elegance.

Creating a table presumes we have a function or functions we wish to tabu-
late. The values a function takes will generally depend on a primary parameter
and, possibly, a number of secondary parameters (which is where much of the
complexity comes from). Books of mathematical tables are structured (nearly
always) in columns (but see below), and we read (nearly always) down a col-
umn as the primary parameter is incremented, generally in regular steps. We
need to decide on the range of values the primary parameter will take and how
fine-grained the tabulation will be – what the step size of its increments will
be. Assigning different values to a second parameter generates a second, third,
. . . column of function values. Sometimes rather than a second parameter, a
second, third, . . . function of the first parameter is tabulated in the successive
columns – like adjacent columns of different trigonometric functions.

In this document the first parameter is called the row variable – its value
determines which row we are in; the second parameter, if present, is called the
column variable – its value determines which column we are in. A table generally
(but not always) presents the values of the row variable in the first column, the
row variable column, sometimes in distinctive type (e.g. bolded). The values
of the column variable are presented in a header row above the table body of
function values. Above the header row there may be a title row and perhaps
a subtitle row where other explanatory material can be displayed. Sometimes
there is a footer row beneath the table body. Vertical rules are absent, horizontal
rules used sparingly – for example, at the top and bottom of the table, or under
the header row, but not in the body of the table.

1.2.1 Transposed tables
From version 3.2 of numerica-tables it is also possible to present tables ‘hor-
izontally’, in which function values are read in rows (generally) left-to-right
across the page. numerica-tables handles this situation by constructing the
table in the usual column-based ‘vertical’ manner and then treating the columns
of calculated function values as rows; the row variable column and the header
row swap roles. The placement of the new row variable column and header row

5

and the ‘decoration’ of the values contained therein (font, alignment, etc.) is all
done after transposition.

The process is effected through the setting transpose and is discussed at
§2.4.8, but examples are presented throughout the document.

1.2.2 tabular environment
The tables created by numerica-tables use the tabular environment of LATEX.
This means that the vertical separation between rows can be altered by means
of the parameter \arraystretch. Writing, for instance,

\renewcommand\arraystretch{1.2}

increases the separation between rows by a scale factor of 1.2. An example of
use occurs in §2.1.3.7.

The separation between columns is determined by the parameter \tabcolsep
which is half the width of the space between columns and defaults to 6 pt.
To change \tabcolsep you can use either of the commands \addtolength or
\setlength. Since the default is 6pt, the commands

\addtolength\tabcolsep{3pt}
\setlength\tabcolsep{9pt}

have the same effect and increase the half-width between columns to 9 pt; see
the final example in §2.2.2.7.

After changing either of these parameters you will need to reset it back to
the default if you do not want all subsequent tables to be stretched vertically
or horizontally as the case may be.

1.3 Shared syntax
The \nmcTabulate command, short-name form \tabulate, shares the syntax
of \nmcEvaluate (see numerica.pdf). When all options are used the command
looks like

\nmcTabulate*[settings]{expr.}[vv-list][num. format]

1. * optional switch; if present ensures a single number output with no for-
matting, or an appropriate error message if the single number cannot be
produced; see §2.5.6.1;

2. [settings] mandatory comma-separated list of key=value settings; this
option is at the heart of creating a table of function values, and is discussed
in the next chapter;

3. {expr.} mandatory argument specifying the mathematical expression or
expressions in LATEX form to be tabulated;

6

4. [vv-list] mandatory comma-separated list (or semicolon-separated list if
the comma package option is used with numerica) of variable=value items,
in particular containing the initial value of the row variable (essential) and
column variable (if one is used);

5. [num. format] optional format specification for presentation of the nu-
merical results (rounding, padding with zeros, scientific notation, fraction-
form output); see §2.5.1.

Unlike \nmcEvaluate (the main command in numerica), for \nmcTabulate the
two apparently optional arguments straddling the main argument (settings
and vv-list) are essential. Although both are delimited by square brackets,
that is in order to draw on the numerica code. Each argument contains items
necessary for the construction of any table of function values.

Should numerica be loaded with the comma package option, numbers in
tables will be displayed with a decimal comma. In this case, to avoid confusion,
items in the vv-list must be separated by a semicolon. Similarly, n-ary functions
– \max, \min and \gcd – must use semicolons as their argument separator. From
version 3.2 of numerica-tables row variable data in the form of lists or files
for the rdata and rfile settings do not need to be comma separated. If the
comma package option is used, the semicolon is assumed (see §2.1.2.2) or some
other item separator can be set with the (new in version 3.2) rdelim setting.

Although math environments are significant for \nmcEvaluate, they should
be avoided with \nmcTabulate. Placing a \tabulate command within a math
environment, or vice versa, is likely to cause a LATEX error. From version 3.2
of numerica-tables, it is possible to specify the math style (\displaystyle,
\textstyle or \scriptstyle) of entries in the row variable column and in the
header row. Function values (numbers) in the table cells are presented between
inline math delimiters ($ $).

7

Chapter 2

\nmcTabulate settings

Just as \nmcTabulate shares the syntax of \nmcEvaluate (of numerica), it also
shares the settings of the latter command – although not all will be relevant. See
the associated document numerica.pdf for a list of those settings and associated
discussion. I will point out instances of their use in the following examples.

In addition to the shared settings, there are many specific to \nmcTabulate,
which is what this document is about. They are discussed in groups in later
sections, some in more than one place. For the main discussion of row variable
settings, see immediately below; for column variable settings see §2.2; for multi-
function tables see §2.3; for whole-of-table formatting see §2.4; for formatting
the function values in table cells see §2.5.

2.1 Row variable settings
Okay, assume we have chosen the function we want tabulated. Now we need
to choose the row variable, how fine-grained we want the tabulation to be and
between which values.

2.1.1 Row variable specification: uniform case
The row variable is set in the settings option of the \tabulate command with
the key rvar – say rvar=x. What value to start tabulating from is specified in
the vv-list – x=0 perhaps – and so does not need a specific key, but what value
to tabulate to, rstop, and the step size, how fine-grained the tabulation is to
be, rstep, do need to be specified in the settings option. In the uniform case
(which makes up the overwhelming majority of cases in HMF) the step size is
constant. It does not change as the value of the row variable changes. (The
non-uniform case, available from version 3.0.0 of numerica-tables, is discussed
in §2.1.2 below. Quite different keys are required.)

The two tables in the example below tabulate sin x and cos x between 0 and
1 in increments of 0.2. By placing the start value of the tabulation variable in

8

Table 2.1: Row variable specification

key type meaning comment

rvar token(s) row variable
rstep real num. step size
rstop real num. stop value excludes rows
rows int number of rows excludes rstop
rspec comma list {rvar, rstep, rows} short form spec.
rround int rounding default: 1

the vv-list, the possibility is opened for other parameters in more complicated
functions to depend on the row variable. Although it will often be the first entry
in the vv-list, it does not need to be.

The initial value of the row variable may depend on other quantities which
must necessarily precede it – lie to the right of it – in the vv-list. The start
value may be a LATEX expression. Both rstep and rstop may also be LATEX
expressions. They are evaluated after the vv-list is evaluated and so may depend
on the values of variables in the vv-list, including the initial value of the row
variable. As of v.3.2 of numerica-tables the vv@=1 (or vvmode=1) setting from
numerica does not affect rstep and rstop. For instance if rvar=x, setting
rstep=1/x when vv@=1 gives a constant step size equal to the reciprocal of the
initial value of the row variable. The following examples illustrate the use of
rvar, rstep and rstop and the presence of the initial value of the row variable
in the vv-list.

\tabulate[rvar=x,rstep=0.2,rstop=1]
{ \sin x }[x=0]\qquad

\tabulate[rvar=x,rstep=0.2,rstop=1]
{ \sin x }[x=0][*]

=⇒

x sin x

0 0
0.2 0.198669
0.4 0.389418
0.6 0.564642
0.8 0.717356

1 0.841471

x sin x

0.0 0.000000
0.2 0.198669
0.4 0.389418
0.6 0.564642
0.8 0.717356
1.0 0.841471

The difference in appearance of the tables results from padding with zeros
in the second. The asterisk in the trailing optional argument has the same
effect in \nmcTabulate as in \nmcEvaluate. As you can see, padding applies
not only to the values of the function but also to the values of the row variable,
although that has been padded to only 1 decimal place (the default) rather than

9

the 6 of the function values. (How many digits to round to, and therefore pad
the row variable values to, is discussed in §2.1.1.1.) Padding makes an obvious
improvement to the appearance, both in the function-value column and the row
variable column.

You may feel a single column of function values makes poor use of space
on the page. To turn the second of these tables into a ‘horizontal’ table, add
the key transpose to the settings option. I have also reduced the number of
decimal places from the default 6 to 4 to avoid any issues with page width.

\tabulate[rvar=x,rstep=0.2,rstop=1,transpose]
{ \sin x }[x=0][4*]

=⇒
x 0.0 0.2 0.4 0.6 0.8 1.0

sin x 0.0000 0.1987 0.3894 0.5646 0.7174 0.8415

To my eye, for such a ‘shallow’ (vertically compressed) table, the horizontal
rules here are intrusive. They can be turned off; see §2.4.5 or, anticipating
the later discussion, add norules to the settings option (prior to version 3.2
of numerica-tables it was necessary to write rules= , an empty setting, to
achieve this), and just for variety use the cosine:

\tabulate[rvar=x,rstep=0.2,rstop=1,transpose,norules]
{ \cos x }[x=0][4*]

=⇒ x 0.0 0.2 0.4 0.6 0.8 1.0
cos x 1.0000 0.9801 0.9211 0.8253 0.6967 0.5403

The remaining quibble is the placement of the column headers. Can they
be centred or otherwise adjusted? Yes; see §2.1.3 for ways of adjusting the row
variable column and header, and §2.2.2 for ways of adjusting the function-value
columns and headers.

It may be more convenient at times to specify the number of rows, rows,
to tabulate rather than a stop value. Only one of rows and rstop should be
given, but if both (inadvertently) are present, it is rows that prevails. The first
of the following three tables shows an example where rows is specified. The
second and third tables use an abbreviated form of the row variable specifi-
cation, rspec. This is a three-element comma list, {rvar,rstep,rows} (with
an optional fourth element, rround; see §2.1.1.1). The second table gives a
straightforward example. In the third table a simple LATEX expression has been
inserted for rows in the rspec comma list. Like rstep and rstop, rows can be
a LATEX expression but unlike rstep and rstop it is evaluated before the vv-list
and therefore cannot depend on quantites specified there like the initial row
variable value. On evaluation, the LATEX expression is rounded to an integer.

\tabulate[rvar=x,rstep=0.2,rows=6]
{ \sin x/\cos x }[x=0][*] \qquad

\tabulate[rspec={x,0.2,6}]
{ \tan x }[x=0][*] \qquad

10

\tabulate[rspec={x,0.2,1.2/0.2}]
{ \sqrt{\sec^2 x - 1} }[x=0.2][*]

=⇒

x sin x/ cos x

0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408
1.2 2.572152

x tan x

0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408
1.2 2.572152

x
√

sec2 x − 1
0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408
1.2 2.572152

2.1.1.1 Rounding: rround

After studying some of the previous tables, we might decide to adjust the step
size, say from 0.2 to 0.25. But changing rstep to the new value gives a discon-
certing result, as you can see from the first of the tables below. numerica-tables
uses a default rounding value of 1 for the row variable and has rounded 0.25
down to 0.2, then 0.2 + 0.25 = 0.45 down to 0.4, then 0.4 + 0.25 = 0.65 down to
0.6, then 0.6+0.25 = 0.85 down to 0.8, at which point it stops since 0.8+0.25 > 1
which is the stopping value. The rounded-down values are the values used –
always it is the displayed rounded value that is used for calculating function
values. The second table corrects matters by adjusting the row variable round-
ing with rround=2. From version 3.2 of numerica-tables the rround value
can also be included as an optional fourth element to rspec. The third table
illustrates this abbreviated form of specification:

\tabulate[rvar=x,rstep=0.25,rstop=1]
{ \exp x }[x=0][*] \qquad

\tabulate[rvar=x,rstep=0.25,rstop=1,rround=2]
{ \exp x }[x=0][*] \qquad

\tabulate[rspec={x,0.25,5,2}]
{ \exp x }[x=0][*]

=⇒

x exp x

0.0 1.000000
0.2 1.221403
0.4 1.491825
0.6 1.822119
0.8 2.225541

x exp x

0.00 1.000000
0.25 1.284025
0.50 1.648721
0.75 2.117000
1.00 2.718282

x exp x

0.00 1.000000
0.25 1.284025
0.50 1.648721
0.75 2.117000
1.00 2.718282

The reason for allowing the inclusion of the rround value in rspec is because
the values included in rspec, together with the initial value assigned to the row
variable in the vv-list, determine the numbers in the row variable column used
to calculate function values. The further settings discussed below in §2.1.3 are
formatting elements affecting appearance but irrelevant to the actual values
calculated.

11

Table 2.2: Non-uniform row variable specification

key type meaning comment

rfunc token(s) formula for row var. values
rdata comma list or

macro
list or macro (containing
list) of row var. values

rfile chars filepath/filename file contains list of
row var. values

rdelim char item separator for rdata or
rfile lists

defaults to , or ;
depending as . or ,
is decimal mark

rverb fp (0/0.5/1) display rdata, rfile values
verbatim (1), or slash
fractions formatted (0.5)

initialized to 0

2.1.2 Row variable specification: non-uniform case
Occasionally one wants to form a table in which the row variable does not
increase or decrease in regular steps; for examples, see HMF Tables 1.1 and 3.1.
(Tables 9.7, 10.5, 10.10 use two step values and could also be handled with these
settings.) For instance, one might want a table of values of simple functions of
a list of constants, or a table of function values at π, π/2, π/3, π/4, . . . , or at 1,
10, 100, 1000, . . . , or a table of function values at thoroughly irregular, perhaps
experimentally determined, values.

numerica-tables provides two means of specifying such row variables, ei-
ther by means of a row variable function (rfunc), when the row variable values
change in a non-uniform but formulaic way, or by explicitly listing the row vari-
able values in a comma list (rdata, rfile), or with some other separator. In
the latter case, the row variable can be displayed either as a sequence of values,
or verbatim as a sequence of expressions – like fractions of π – with the rverb
setting.

2.1.2.1 rfunc

Suppose – perhaps with an interest in the distribution of prime numbers – that
we want to create a small table of values of n/ ln n for, say, n = 10, 100, 1000,
10000, . . . The prospective row variable n is not increasing uniformly, although
clearly in a formulaic way. The key rfunc is for such cases; in the present
instance rfunc=10^n where now n does increment by a constant amount:

\tabulate[rfunc=10^n,rvar=n,rstep=1,rows=7]
{ n/\ln n }[n=1][0] \qquad

\tabulate[rfunc=10^n,rvar=n,rstep=1,rows=7,norules]
{ n/\ln n }[n=1][0]

12

=⇒

n n/ ln n

10 4
100 22

1000 145
10000 1086

100000 8686
1000000 72382

10000000 620421

n n/ ln n
10 4

100 22
1000 145

10000 1086
100000 8686

1000000 72382
10000000 620421

The benefit of the norules setting in the second table is obvious.
The variable n has two meanings in these tables although only one is publicly

visible. Initially n is the variable of a step function, incremented by rstep=1
and taking values 10^n. Once the table is compiled, n denotes these successive
function values, 10, 100, . . . , 10000000. To the reader, only this latter meaning
is evident, the potentially confusing ‘double usage’ not so. The initial value
n=1 in the vv-list applies to the row variable function 10^n, not to the function
n/\ln n being tabulated (so the error-producing expression 1/\ln 1 does not
arise).

2.1.2.2 rdata, rfile, rdelim, rverb

A difficulty in reading the last two tables is working out just how many zeros
there are in the larger numbers in the left column. They would be more readable
‘at a glance’ if we could write them in scientific notation. To do that, use the
rdata and rverb keys. In the tables above, rverb is absent (corresponding to
rverb=0); in the tables below rverb=1, the effect of which is to use the row
variable values in the rdata list verbatim. In the first example below, the larger
values of the row variable are now expressed in scientific notation, which gives a
table that is easier to grasp – but less pleasing to the eye. The right alignment
of the column is the culprit, as is seen when presented left-aligned in §2.1.3.2.

\tabulate[rdata={10,100,1000,10^4,10^5,10^6,10^7},
rverb=1,rvar=n]{ n/\ln n }[0] \qquad

\def\mydata{\sfrac14\,\pi,\sfrac13\,\pi,\sfrac12\,\pi,
\sfrac23\,\pi,\sfrac34\,\pi,\pi}

\tabulate[rdata=\mydata,rverb=1,rvar=k]
{ k }[*]

=⇒

n n/ ln n

10 4
100 22

1000 145
104 1086
105 8686
106 72382
107 620421

k k

1/4 π 0.785398
1/3 π 1.047198
1/2 π 1.570796
2/3 π 2.094395
3/4 π 2.356194

π 3.141593

13

In the second example rverb=1 is used to make a table of simple fractions
of π, listed verbatim in the row variable column against their decimal values
in the second column (the pointless header row is discussed shortly). When
rverb=1, rround does not apply. The full value is used in the calculation. For
the fractions I have used the \sfrac command from the xfrac package (loaded
in the preamble to the present document). \sfrac produces an elegant inline
fraction with a smaller vertical footprint than \tfrac and so is better suited
to use in a table column that aligns fraction above fraction. The data has
been stored in the macro \mydata. By setting rdata equal to this macro, the
\tabulate command gains access to the values stored in it.

In addition to a list or a macro, data for the row variable can also be stored
as a list in a file – say mydata.txt. If mydata.txt is placed in the directory
of the current document and rfile=mydata.txt entered in the settings option
of the \tabulate command, the file will be found and the values in the file
used for the row variable. Alternatively, the file could be placed in your texmf
tree and your TEX distro alerted to its presence (by refreshing the filename
database). Again rfile=mydata.txt in the settings option will ensure the file
is found and the contents used for the row variable values. Or, the file could
be stored elsewhere and the rfile key equated to the full path and filename –
something like rfile=e:/mydocs/mydatafiles/mydata.txt. This ensures the
file will be found and the contents used for the row variable values. Note that
even in Windows systems (where file paths use backslashes) the path requires
that forward slashes only be used.

The example above uses commas to separate the values accessed by rdata.
In earlier versions of numerica-tables this was the case even if the comma
package option was used with numerica (meaning values using a comma as
the decimal mark would need to be enclosed in braces). From version 3.2 of
numerica-tables, if the comma package option is used when calling numerica,
then the list that rdata is equated to (or the file that rfile references) should
be, by default, a semicolon list. It is also possible, from version 3.2, to specify
your own delimiter (item separator) by using the rdelim setting. For instance,
rdelim=| would mean that the ‘pipe’ character separates items in the rdata
list (or the file referenced by rfile).

An irritant with the second table above is the pointless header row. To
suppress it I could anticipate and enter headless (see §2.4.3) in the settings
option. But perhaps a better solution is to present the table horizontally by
means of the transpose setting. Now the pointless header in the vertical table
becomes a pointless first column in the horizontal table. The way to suppress
that is by giving a zero value to the setting rpos (see §2.1.3.1 for a discussion
of rpos). rpos determines the placement of the row variable column and a
zero value suppresses its display entirely. I have also suppressed all rules with
the norules setting, and reduced the rounding value to 4. At which point the
remaining quibble is with the default right alignment of the entries in the header
row. I have anticipated again and centred each column with the calign=c
setting (§2.2.2.6).

14

\def\mydata{\sfrac14\,\pi, \sfrac13\,\pi, \sfrac12\,\pi,
\sfrac23\,\pi, \sfrac34\,\pi, \pi}

\tabulate[rdata=\mydata,rverb=1,rvar=k,rpos=0,calign=c,
norules,transpose]{ k }[4*]

=⇒
1/4 π 1/3 π 1/2 π 2/3 π 3/4 π π

0.7854 1.0472 1.5708 2.0944 2.3562 3.1416

2.1.2.3 Fraction-form values

The rverb setting applies only to the rdata and rfile keys. It has no effect
otherwise. Besides 0 and 1, it can also take a third value, rverb=1/2, which can
be thought of as ‘semi-verbatim’. (rverb=0.5 or indeed any expression in the
syntax of l3fp – like sin(pi/6) – that evaluates to one half will serve as well.)
This renders ‘naked’ slash fractions from rdata or rfile input in formatted
form using the \sfrac command from the xfrac package if it is loaded (e.g.
2/3), or in scriptstyle (e.g. 2/3) if it isn’t. A ‘naked’ slash fraction here means
the fraction isn’t buried within parentheses or other constructs.

I repeat the vertical presentation of the last table but use the ‘semi-verbatim’
setting. By moving the repeated factor \pi from the data file to the function
being tabulated, the data file becomes a list of ‘naked’ slash fractions (and
one integer) and the header row becomes meaningful. Note that the integer is
displayed as is with the ‘semi-verbatim’ setting; only the slash fractions are re-
formatted. Again, I have centred the second column with the calign=c setting:

\def\mydata{1/4,1/3,1/2,2/3,3/4,1}
\tabulate[rdata=\mydata,rverb=1/2,

rvar=k,calign=c]
{ k\pi }[k=0][6*]

=⇒

k kπ

1/4 0.785398
1/3 1.047198
1/2 1.570796
2/3 2.094395
3/4 2.356194

1 3.141593

2.1.3 Formatting the row variable column & header
The padding option (*) of the trailing optional argument is one way of format-
ting the row variable values, but to how many decimal places? Aligned left or
right or centred? Under what heading – the examples so far have simply used
the row variable for the header? And should the row variable column be at
the left of the table, or the right – or both? These and related questions are
answered by assigning values to the keys listed in Table 2.3.

15

Table 2.3: Formatting the row variable column & header

key type meaning initial

rpos int (0. . . 4) column placement 1
ralign char (r/c/l) horizontal alignment r
rfont chars font (\math<chars>)
rhead tokens header
rhnudge fp nudge header <fp> mu 0
rhsize int (-4. . . 5) font size relative to

0=\normalsize
0

rmath char (s/t/d) script-, text-, displaystyle t
rvar’ tokens 2nd row variable col. spec.
rhead’ tokens header of 2nd row var. col.

(if it exists)
rhnudge’ fp nudge 2nd row var. col.

header <fp> mu
0

2.1.3.1 Position in the table: rpos

By default, the row variable column is the first column of the table. Its position
is determined by the value of the key rpos:

• rpos=0, suppressed (no row variable column);

• rpos=1, first column (the default);

• rpos=2, last column;

• rpos=3, first and last columns (e.g. see §2.3);

• rpos=4, first column and a last column with values produced by a user-
defined function of the first; see §2.4.6;

• Any other integer acts like rpos=1.

When a table is transposed, these settings apply to the new row variable column
(the old header row). For instance, with rpos=2 we get what was originally the
header row treated as the row variable column and placed on the right:

\tabulate[rspec={x,0.2,5},rpos=2,transpose,norules]
{ \tan x }[x=0.2][*]

=⇒ 0.2 0.4 0.6 0.8 1.0 x
0.202710 0.422793 0.684137 1.029639 1.557408 tan x

16

Adjoined multi-function tables By assigning different values to rpos it is
possible to include multiple functions in the same table by adjoining distinct
single column tables. HMF has many, many examples where multiple func-
tions (like the trigonometric or hyperbolic functions) are tabulated in separate
columns of the same table.

numerica-tables has a systematic way of doing this, described in §2.3, but
with the settings discussed to this point, the same effect can be achieved by
the present more naive means. The example below displays as a single multi-
columned table but is composed of three separate tables. I have used three
different rpos settings (rpos=1, the default setting, is implicit in the first) to
achieve this and ended all but the last \tabulate command with the LATEX
comment character %. These characters are essential if the tables are to abut
exactly. Omitting them results in a space between the tables.

\tabulate[rspec={x,0.2,6}]
{ \sin x }[x=0][*]%

\tabulate[rpos=0,rspec={x,0.2,6}]
{ \cos x }[x=0][*]%

\tabulate[rpos=2,rspec={x,0.2,6}]
{ \tan x }[x=0][*]

=⇒

x sin x

0.0 0.000000
0.2 0.198669
0.4 0.389418
0.6 0.564642
0.8 0.717356
1.0 0.841471

cos x

1.000000
0.980067
0.921061
0.825336
0.696707
0.540302

tan x x

0.000000 0.0
0.202710 0.2
0.422793 0.4
0.684137 0.6
1.029639 0.8
1.557408 1.0

It is possible to similarly join transposed tables (you need the headless
setting), stacked one below the other, but again that effect can be achieved
more readily in a systematic way – see §2.3.

2.1.3.2 Alignment: ralign

By default, the alignment of all columns including the row variable column is
to the right, as in the examples so far. This lends itself to clean output when
padding with zeros is activated (the * in the trailing argument) or when some
values are negative, since minus signs can interfere with alignment of digits in
left or centred alignments. In the first example below I present an earlier table
where the row variable values were a mix of powers of 10 multiplied out and
in exponent form. In that table (see §2.1.2.2) with its right alignment the eye
stumbled over the exponents. In left alignment, it is a column of ‘1’s which
is aligned and the alignment is ‘smooth’. Left alignment is achieved by setting
ralign=l (a lowercase ‘L’). In the second table I have chosen a centred alignment
for the row variable column, ralign=c (and once more used calign=c for the

17

function-value column). The other possible setting for ralign is the default
right alignment, ralign=r.

\tabulate[rdata={10,100,1000,10^4,10^5,10^6,10^7},
rverb=1,rvar=n,ralign=l]

{ n/\ln n }[0]\qquad
\tabulate[rspec={x,0.01,7},rround=2,ralign=c,calign=c]

{ \sin x }[x=1.51][*]

=⇒

n n/ ln n

10 4
100 22
1000 145
104 1086
105 8686
106 72382
107 620421

x sin x

1.51 0.998152
1.52 0.998710
1.53 0.999168
1.54 0.999526
1.55 0.999784
1.56 0.999942
1.57 1.000000

2.1.3.3 Font: rfont

You may wish to distinguish the values in the row variable column from the
values in the function-value column typographically, for instance by bolding
them. This is effected through the setting rfont. Possible values for this setting
are rm (roman), bf (bold face), it (italic), sf (sans serif), and tt (typewriter).
For instance, rfont=bf applies \mathbf to each row variable value, rfont=tt
applies \mathtt to each row variable value, and so on. If you set rfont=xx
when \mathxx has not been defined, then a LATEX error will result. Equally,
something like rfont=cal (where \mathcal has been defined) should not cause
error but will give unexpected results if the digits 0 to 9 are not part of the font.
In the next example, I repeat the last example in ‘vertical’ form but with the
row variable column values bolded to draw attention to their placement on the
right – but note that the rfont setting has no effect on the row variable header.

\tabulate[rspec={x,0.2,5},rpos=2,rfont=bf]
{ \tan x }[x=0.2][*] \qquad

\tabulate[rspec={x,0.2,5},rpos=2,rfont=bf,
rhead=\boldsymbol{x}]

{ \tan x }[x=-0.4][*]

=⇒

tan x x

0.202710 0.2
0.422793 0.4
0.684137 0.6
1.029639 0.8
1.557408 1.0

tan x x

−0.422793 −0.4
−0.202710 −0.2

0.000000 0.0
0.202710 0.2
0.422793 0.4

18

2.1.3.4 Row variable header: rhead

The default header is the row variable symbol. In the second table that has been
changed by giving a value to the key rhead. I have used rhead=\boldsymbol{x}
(rather than \mathbf{x}) in order to get an italicized bold symbol. I’ve also
added a to rhead in order to push the (by default) right-aligned
header leftwards and give a more centred appearance to its positioning. Math
delimiters ($ $) are inserted automatically by numerica-tables. If you do not
want any header at all for the row variable column, entering rhead= , an empty
setting, will achieve this – at least from version 3.2 of numerica-tables. In
earlier versions you needed to set rhead to (e.g.) a space of some kind like
\ (an inter-word space).

2.1.3.5 Nudging the header: rhnudge

Choosing a centred alignment for the header to the row variable column will
generally not be appropriate when negative values are involved. In an earlier
table I used a phantom to get around this. Another way which avoids obscuring
the true content of the rhead setting with positioning commands is to use the
setting rhnudge.

Both tables below have the default right alignment of the row variable
column and use rhnudge to adjust the header position. For positive values,
rhnudge works in the opposite sense to the alignment, to the left for right align-
ment, and to the right otherwise. The units for nudging are mu (math units,
18 to a quad), but only a number should be specified; the ‘mu’ is supplied by
numerica-tables.

\tabulate[rvar=x,rstep=0.25,rstop=0.5,rround=2,
rfont=bf,rhead=\boldsymbol{x},rhnudge=9]

{ \sin x }[x=-0.5][4*]\qquad
\tabulate[rvar=x_{\text{int}},rstep=1,rstop=4,

rround=0,rfont=bf,rhnudge=-12,
rhead=\boldsymbol{x_{\text{int}}}]

{ \exp x_{\text{int}} }[x_{\text{int}}=0][4*]

=⇒

x sin x

−0.50 −0.4794
−0.25 −0.2474

0.00 0.0000
0.25 0.2474
0.50 0.4794

xint exp xint

0 1.0000
1 2.7183
2 7.3891
3 20.0855
4 54.5982

In the second table the row variable takes single digit integer values, while the
row variable name occupies more than one character. With a right alignment
the header would protrude out to the left. By giving rhnudge a negative value
(rhnudge=-12 in the example) it is brought back to a centred position in the
row variable column.

19

2.1.3.6 Font size of the header: rhsize

The font size of the header can be changed by assigning an integer value to the
key rhsize. Valid values range from −4, corresponding to \tiny, through 0,
corresponding to \normalsize, to 5, corresponding to \Huge. The actual values
in points differ depending as \normalsize is 10pt, 11pt, or 12pt, but range from
5pt for \tiny when \normalsize is 10pt, to 24.88pt for \Huge in all three cases.
See also §2.2.2.9.

2.1.3.7 rmath

By default the row variable column is displayed in textstyle (\textstyle). By
setting rmath to s, t or d it is possible to explicitly choose \scriptstyle,
\textstyle or \displaystyle for its display. rmath is relevant when one might
want to display more complicated structures than numbers in the row variable
column, e.g. verbatim items when using rdata or rfile, or in transposed
multi-function tables; see the example in §2.3. Returning to an earlier example,
suppose the macro \mydata contains a list of fractions, not in slash form but
\frac-form:

\def\mydata{\frac14,\frac13,\frac12,\frac23,\frac34,1}
\tabulate[rdata=\mydata,rverb=1,rvar=k,calign=c]

{ k\pi }[k=0][6*]\qquad
\renewcommand\arraystretch{1.2}
\tabulate[rdata=\mydata,rverb=1,rvar=k,calign=c]

{ k\pi }[k=0][6*]\qquad
\renewcommand\arraystretch{1}
\tabulate[rdata=\mydata,rverb=1,rvar=k,rmath=s,calign=c]

{ k\pi }[k=0][6*]

=⇒

k kπ

1
4 0.785398
1
3 1.047198
1
2 1.570796
2
3 2.094395
3
4 2.356194
1 3.141593

k kπ

1
4 0.785398
1
3 1.047198
1
2 1.570796
2
3 2.094395
3
4 2.356194
1 3.141593

k kπ

1
4 0.785398
1
3 1.047198
1
2 1.570796
2
3 2.094395
3
4 2.356194
1 3.141593

The first table is unacceptable; the second (with \arraystretch set to 1.2) and
the third (with rmath=s) are at least readable but neither is really satisfactory.
Better is to use \sfrac, either directly or by the ‘semi-verbatim’ rverb setting
discussed earlier in §2.1.2.3.

2.1.3.8 rvar’, rhead’, rhnudge’

These settings become relevant only when rpos=4; see §2.4.6.

20

Table 2.4: Column-variable specification

key type meaning comment

cvar token(s) column variable
cstep real num. step size
cstop real num. stop value either cstop
cols int number of columns or cols
cspec comma list {cvar,cstep,cols} short form spec.
chround int col. var. rounding default: 0

2.2 Column-variable settings
When a function of two variables is tabulated, we generally think of one variable
as the primary variable and the other as a parameter. To tabulate such a
function, we use the primary variable as the row variable and create a succession
of adjacent columns of function values according to the different values of the
parameter. In this document I call this second variable the column variable
(cvar). Just as with the row variable, to create a table we need its start value
(specified in the vv-list), and its step (cstep) and stop (cstop) values.

\tabulate[rspec={x,0.2,5},cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0.2][4*]

=⇒

x\k 3 5 7 9
0.2 0.5646 0.8415 0.9854 0.9738
0.4 0.9320 0.9093 0.3350 −0.4425
0.6 0.9738 0.1411 −0.8716 −0.7728
0.8 0.6755 −0.7568 −0.6313 0.7937
1.0 0.1411 −0.9589 0.6570 0.4121

In this example cvar=k is the column variable. I have chosen a step size
cstep=2 and a stop value cstop=9. The start value (k=3) is specified in the vv-
list. Although in the example these values are numbers, all three values could be
LATEX expressions that evaluate to numbers. In particular, the expressions for
step and stop values may include the row and column variables (in the example
x and k) which are assigned their initial vv-list values.

numerica-tables has automatically inserted the row variable header which
now has a double function: it serves also as the ‘header’ of the header row.
As you can see x\k has been inserted into this cell. From version 3.2 of
numerica-tables the automatic insertion of this form of header in a multi-
column table occurs if rhead is omitted. (If you want nothing to show, put
rhead= , an empty setting.) This form of header above the row variable col-
umn occurs throughout HMF. In the present example it shows the reader that

21

the numerical values displayed in the row variable column are values of x and
the values in the column headers are values of k.

As with the row variable, rather than using a stop value, cstop, you can
specify the number of columns, cols, explicitly. I could have replaced cstop=9
with cols=4 to get the same result. cols specifies the number of function-value
columns; the row variable column is ignored for this count. A quirk of using
cols is that it is then possible to have a zero step size, cstep=0. (A similar
comment applies to rows and rstep.) For an instance where this is useful, see
the last example in §2.2.2.7.

Again as with the row variable, the column specification can be condensed
into a comma list with the key cspec. This is a 3-element comma list of the
form {cvar,cstep,cols} (and as for rspec, with an optional fourth element,
chround; see §2.2.1). Thus, for the preceding table I could also have written

\tabulate[rspec={x,0.2,5},cvar=k,cstep=2,cols=4]
{ \sin kx }[k=3,x=0.2][4*]

or more succinctly

\tabulate[rspec={x,0.2,5},cspec={k,2,4}]
{ \sin kx }[k=3,x=0.2][4*]

and produced the same table.
Like their row equivalents, cstep, cstop and cols can all be LATEX expres-

sions, and like those equivalents, the first two are evaluated after the vv-list
and so may depend not only on numbers and constants but also on the initial
values of the row and column variables, which are assigned in the vv-list. cols
is evaluated before the vv-list; it may be a LATEX expression but cannot depend
on the row or column variable.

Multi-column tables can be transposed: simply add transpose to the set-
tings option. I have done this for the last example. Transposition automatically
changes the positions of k and x in the new row variable header:

\tabulate[rspec={x,0.2,5},cvar=k,cstep=2,cstop=9,
transpose]{ \sin kx }[k=3,x=0.2][4*]

=⇒

k\x 0.2 0.4 0.6 0.8 1.0
3 0.5646 0.9320 0.9738 0.6755 0.1411
5 0.8415 0.9093 0.1411 −0.7568 −0.9589
7 0.9854 0.3350 −0.8716 −0.6313 0.6570
9 0.9738 −0.4425 −0.7728 0.7937 0.4121

To my eye, this table looks odd. Admittedly, the oddness is exaggerated by
the new row variable column being a column of integers; ralign=c would help
there. But the underlying problem remains: we expect the coarser graining
in the column variable and its header row, and the finer graining in the row
variable and its column. Transposition has confounded this expectation.

22

2.2.1 Rounding: chround

Generally the column variable increments in larger steps than the row variable.
Often these are integer steps. For that reason the default rounding value of the
column variable is 0 (as against 1 for the row variable), but it can be changed
by assigning a different value to the key chround.

For transposed tables, rounding is applied before transposition. The func-
tion values displayed in the body of the table are calculated for the displayed
values of the row and column variables. Transposition doesn’t change the dis-
played function values and therefore shouldn’t change the displayed row and
column variable values, irrespective of their placement in the table. In the last
(transposed) example the ‘new’ column headers show that the original row vari-
able rounding has been retained. As an essential part of the column variable
specification, chround can be included as an optional fourth element in cspec.

Since the default column variable rounding is 0, any non-integer increment
to that variable needs an explicit value to be assigned to chround. For instance
if k increments by, say, 0.25, then chround=2 will need to be entered in the
settings option of the \tabulate command, or 2 entered as the fourth element
of cspec:

\tabulate[rspec={x,0.2,5},ralign=c,
cspec={k,0.25,4,2}]

{ \sin kx }[k=3,x=0.2][*4]

=⇒

x\k 3.00 3.25 3.50 3.75
0.2 0.5646 0.6052 0.6442 0.6816
0.4 0.9320 0.9636 0.9854 0.9975
0.6 0.9738 0.9290 0.8632 0.7781
0.8 0.6755 0.5155 0.3350 0.1411
1.0 0.1411 −0.1082 −0.3508 −0.5716

2.2.2 Column header formatting
Column header formatting depends on whether the table has a single column of
function values, or multiple columns of function values. For the latter there are
a number of built-in style settings for the header, accessed by assigning a value
(0, 1, 2, 3) to the setting chstyle. This can (sometimes) be adjusted with the
settings chfont, chnudge and chmath. If these built-in styles don’t satisfy then
it is possible to define your own header to the function-value columns by using
the setting chead.

2.2.2.1 Single-column header

When there is only one column of function values, the function being tabulated
is by default set as the header to the column. This can be nudged left or right by
giving a numerical value to chnudge. It can be set in script-, text- or displaystyle

23

Table 2.5: Formatting the column variable header

key type meaning default

chstyle int (0. . . 4) header style 0
chead token(s) user-defined col. var.

header
calign char (r/c/l) column alignment r
chnudge fp nudge header chnudge mu 0
chfont chars font (\math<chars>)
chmath char (s/t/d) script-, text- or displaystyle t
chsize int (-4. . . 5) font size relative to

0 => \normalsize
0

(see the example) by setting chmath to s, t (the default) or d. chfont, however,
has no effect in the single column case.

\tabulate[rspec={x,0.25,5},rround=2,chmath=s]
{ \frac{2}{\sqrt\pi} e^{-x^2} }[x=0][*] \qquad

\tabulate[rspec={x,0.25,5},rround=2]
{ \frac{2}{\sqrt\pi} e^{-x^2} }[x=1][*] \qquad

\tabulate[rspec={x,0.25,5},rround=2,chmath=d]
{ \frac{2}{\sqrt\pi} e^{-x^2} }[x=2][*]

=⇒

x 2√
π

e−x2

0.00 1.128379
0.25 1.060014
0.50 0.878783
0.75 0.642931
1.00 0.415107

x 2√
π

e−x2

1.00 0.415107
1.25 0.236521
1.50 0.118930
1.75 0.052775
2.00 0.020667

x
2√
π

e−x2

2.00 0.020667
2.25 0.007142
2.50 0.002178
2.75 0.000586
3.00 0.000139

You may want some other header to the function-value column, one of your
own choosing. In that case give chead a value. You are responsible for the
entire content, including any math environment; see the examples at §2.5.1.1.

2.2.2.2 Multi-column header

The default header style lists the column variable value at the head of each
function-value column. Implicitly it corresponds to chstyle=0.

\tabulate[rspec={x,0.2,5},cvar=k,cstep=2,cstop=9]
{ \sin kx }[k=3,x=0.2][4*]

24

=⇒

x\k 3 5 7 9
0.2 0.5646 0.8415 0.9854 0.9738
0.4 0.9320 0.9093 0.3350 −0.4425
0.6 0.9738 0.1411 −0.8716 −0.7728
0.8 0.6755 −0.7568 −0.6313 0.7937
1.0 0.1411 −0.9589 0.6570 0.4121

Unless rhead is explicitly specified, numerica-tables will automatically insert
a row variable header, like x\k in the example, where the backslash separates
row from column variable. (But see also §2.2.2.3 below.) HMF contains a
multitude of instances of this style; see Tables 9.7, 17.5, 21.1, 24.3, 27.4, etc.
for examples. As noted, you can override the default assignment to rhead with
your own specification, but for chstyle > 0 this is no longer true.

2.2.2.3 diagbox, slashbox

Rather than having x\k or something similar automatically inserted, you might
be tempted to use \diagbox from the diagbox package, or \backslashbox
from the earlier slashbox package, say rhead=\diagbox{x}{k}. Because rhead
wraps its contents in math delimiters ($ signs) this causes a LATEX error. The
solution is to add $ signs: rhead=$\diagbox{x}{k}$ or, since x and k should
be in math-italic, rhead=$\diagbox{$x$}{$k$}$. You might therefore try

\tabulate[rspec={x,0.2,5},ralign=c,
cvar=k,cstep=2,cstop=9,
rhead=$\diagbox{$x$}{$k$}$]

{ \sin kx }[k=3,x=0.2][4*]

but the diagonal box is far too large. One solution is to use the optional first
argument of the \diagbox command. In that argument one can specify an
explicit height and width but I prefer to work solely with the settings available
in numerica-tables. In that spirit, put rhsize=-4, its smallest value. Alas
this also shrinks the displayed size of the variables x and k. To counteract
that, explicitly specify \smallx and \smallk for the mandatory \diagbox
arguments, the \small overriding the rhsize setting to give a presentable result:

\tabulate[rspec={x,0.2,5},ralign=c,rhsize=-4,cspec={k,2,4},
rhead=$\diagbox{\small$x$}{\small$k$}$]

{ \sin kx }[k=3,x=0.2][4*]

=⇒

x
k 3 5 7 9

0.2 0.5646 0.8415 0.9854 0.9738
0.4 0.9320 0.9093 0.3350 −0.4425
0.6 0.9738 0.1411 −0.8716 −0.7728
0.8 0.6755 −0.7568 −0.6313 0.7937
1.0 0.1411 −0.9589 0.6570 0.4121

25

However, the booktabs manual admonishes against the use of vertical rules
and double rules and generally advises to use as few rules as possible. By adding
a line (admittedly diagonal, so only half sinning) the diagbox or slashbox
packages are working in the opposite direction, more suited to tables in the
older ‘grid’ style. In the present document I shall use x\k and make no further
use of either \diagbox or \backslashbox.

2.2.2.4 Built-in styles: chstyle

There are some built-in header styles, depending on the value of the setting
chstyle. No value for this setting corresponds to chstyle=0, which results in
column variable values at the heads of function-value columns and something
like x\k at the head of the row variable column, as previously described.

chstyle=1 changes the header of the first function-value column to the form
variable=value, e.g. k = 3 in the example below. This may be apt when a small
rounding value is being used and the resulting columns are narrow. I can find
only one real instance in HMF, Table 26.7. Note that the row variable header,
inserted automatically, simplifies in this case to x rather than x\k.

\tabulate[rspec={x,0.2,5},cspec={k,2,3},chstyle=1]
{ \sin kx }[k=3,x=0.2][3*]

=⇒

x k = 3 5 7
0.2 0.565 0.841 0.985
0.4 0.932 0.909 0.335
0.6 0.974 0.141 −0.872
0.8 0.675 −0.757 −0.631
1.0 0.141 −0.959 0.657

chstyle=2 changes the header of all function-value columns to the form
variable=value. In HMF examples are Tables 7.4, 7.9, 10.10, 16.6, etc. Again,
the row variable header is inserted automatically and displays the row variable.

\tabulate[rspec={x,0.2,5},cspec={k,2,3},chstyle=2]
{ \sin kx }[k=3,x=0.2][4*]

=⇒

x k = 3 k = 5 k = 7
0.2 0.5646 0.8415 0.9854
0.4 0.9320 0.9093 0.3350
0.6 0.9738 0.1411 −0.8716
0.8 0.6755 −0.7568 −0.6313
1.0 0.1411 −0.9589 0.6570

chstyle=3 fills each column variable header with the expression being tab-
ulated but with the column variable replaced by its respective values. See HMF
Tables 5.4, 8.1, 9.1, 19.1, etc. for examples.

26

\tabulate[rspec={x,0.2,5},cspec={k,2,3},chstyle=3]
{ \sin kx }[k=1,x=0.2][4*]

=⇒

x sin 1x sin 3x sin 5x

0.2 0.1987 0.5646 0.8415
0.4 0.3894 0.9320 0.9093
0.6 0.5646 0.9738 0.1411
0.8 0.7174 0.6755 −0.7568
1.0 0.8415 0.1411 −0.9589

Notable here is that the column variable takes the value 1, and the 1 is dis-
played (sin 1x) where it would normally be suppressed. A similar situation can
arise when the column variable takes the value 0. The legacy setting chstyle=4
will, in the present instance, display sin 1x as sin x but is deprecated – given the
variety of ways that 1 (and 0) can appear in formulas, it seems more straight-
forward in to set chstyle=0 (or omit it) and . . .

2.2.2.5 User-defined header: chead

. . . form chead oneself, with the relevant math delimiters ($) and tabbing
ampersands (&). (Always, to use chead, chstyle must be omitted or set to
zero.) In the example,

chead=$\sin x$&$\sin3x$&$\sin5x$

would do. It is a header for the function-value columns; a header for the row
variable column is not included. Note that there is also no end of row mark
which is inserted automatically.

Another way to tackle the particular issue in the present case is to form a
multi-function table (see §2.3) of, say, sin x, sin 3x, sin 5x.

2.2.2.6 Alignment: calign

By default the function-value columns are aligned right, calign=r. Also avail-
able are calign=c for centred alignment and calign=l (lowercase L) for left
alignment. A table containing both positive and negative values is best set with
right alignment and number padding (* in the trailing optional argument) to
avoid the misalignment of digits in columns caused by the presence of minus
signs. (Handling signs in tables is discussed later; see §2.5.2.2.) Varying num-
bers of digits before the decimal point may be best handled with the t-notation
of §2.5.2. Examples where a centred alignment is helpful, centring the header
above uniform columns of figures (same number of digits before and after the
decimal point) have already been given; see §2.1.2.3 and §2.1.3.2.

2.2.2.7 Nudging header entries: chnudge

As with the row variable header, it is possible to nudge the column headers
to left or right. A positive nudge value shifts the header in the opposite sense

27

to the alignment by the specified number of mu (math units; 18 to a quad),
to the left in a right alignment and to the right otherwise. In version 3.2 of
numerica-tables, the key chnudge is a comma list of nudge values (as against
a single value in earlier versions). As with rhnudge, only numbers should be
supplied; numerica-tables inserts the unit (mu). Often a single value is all that
is required. For instance, in the next example chnudge=9 suffices to nudge the
column headers to the left but leave the function values (with their potentially
awkward minus signs) right aligned.

\tabulate[rspec={x,0.2,5},ralign=c,
cspec={k,2,3},chstyle=2,chnudge=9]

{ \sin kx }[k=3,x=0.2][*]

=⇒

x k = 3 k = 5 k = 7
0.2 0.564642 0.841471 0.985450
0.4 0.932039 0.909297 0.334988
0.6 0.973848 0.141120 −0.871576
0.8 0.675463 −0.756802 −0.631267
1.0 0.141120 −0.958924 0.656987

But if the values of k in this example had different numbers of digits, no
single chnudge value would do. In that case give chnudge a comma-list of
values, potentially one for each function-value column. If the comma list has
fewer entries than the number of columns, the last entry is used for all ‘left over’
columns. For instance, in the following example, chnudge is given three values,
the third of which is also used for the fourth function-value column:

\tabulate[rspec={x,0.2,5},ralign=c,cspec={k,50,3},
chstyle=2,chnudge={13.5,9,4.5}]

{ \cos kx }[k=1,x=0.2][*]

=⇒

x k = 1 k = 51 k = 101 k = 151
0.2 0.980067 −0.714266 0.218573 0.347468
0.4 0.921061 0.020351 −0.904451 −0.758532
0.6 0.825336 0.685194 −0.613951 −0.874600
0.8 0.696707 −0.999172 0.636065 0.150740
1.0 0.540302 0.742154 0.892005 0.979355

Negative nudges can be useful when a column header is longer than the dis-
played function values. Just for the pleasure of providing an instance where a
zero step value is useful, the following small table allows an immediate compar-
ison of a negative nudge with no nudge. I have adjusted the separation of the
columns with \tabcolsep to provide a more adequate separation of the headers:

\setlength\tabcolsep{9pt}
\tabulate[rspec={n,100,5},ralign=c,rround=0,

cspec={k,0,2},chstyle=3,chnudge={-21,0}]

28

{ (1+k/n)^n }[k=1,n=100][3*]
\setlength\tabcolsep{6pt}

=⇒

n (1 + 1/n)n (1 + 1/n)n

100 2.705 2.705
200 2.712 2.712
300 2.714 2.714
400 2.715 2.715
500 2.716 2.716

2.2.2.8 Math style: chmath

The chmath setting is a comma list of the values s, t, or d presenting the
header of the corresponding function-value column in either scriptstyle, textstyle
or displaystyle respectively. The setting is initialized to t. If there are more
function-value columns in the table than entries in chmath the last value in
chmath is used for the extra columns. See the first table in §2.3 (on multi-
function tables) for an example of this setting’s use.

2.2.2.9 Font size: chsize

The font size of the header row entries can be changed with the setting chsize
which is a comma list of integer values, each integer in the range −4 to 5
corresponding to a LATEX font size command according to the scheme

−4 \tiny 1 \large
−3 \scriptsize 2 \Large
−2 \footnotesize 3 \LARGE
−1 \small 4 \huge

0 \normalsize 5 \Huge

Should there be more columns in the table than entries in chsize, then the last
value in chsize is used for the extra columns. In the following example, the
font size has been tweaked by means of the setting chsize={1,-1,1} to bring
the character size of the column headings into greater conformity:

\tabulate[ff,rspec={x,0.5,4},chsize={1,-1,1}]
{ \frac{ e^{2x}-1}{ e^{2x}+1},\tanh x,

\frac{ \sinh x}{\cosh x}} [x=0.5] [4*]

=⇒

x e2x−1
e2x+1 tanh x

sinh x
cosh x

0.5 0.4621 0.4621 0.4621
1.0 0.7616 0.7616 0.7616
1.5 0.9051 0.9051 0.9051
2.0 0.9640 0.9640 0.9640

29

2.3 Multiple functions in a single table
As noted in §2.1.3.1, using adjoining tables in order to tabulate more than one
function at a time is ‘clunky’. Much better is to enter the functions in the main
argument of a \tabulate command separated by a specified mark, then alert
\tabulate that this has happened by setting numerica’s ff key.

The default multi-function delimiter is the comma if the decimal point is a
dot (period), or the semicolon if it is a comma (numerica loaded with the comma
package option). With the default delimiter it suffices to enter ff in the settings
option; otherwise enter ff=<mark> there. For example ff=| makes the ‘pipe’
character the multi-formula delimiter. If the ff key is overlooked then multiple
formulas in the main argument will almost certainly cause a LATEX error.

The following example (of the so-called ‘Einstein functions’) illustrates both
a multi-function table using the default comma as separator, and the use of
chmath to shrink the function in the last column. If not shrunk, ln(1 − e−x) ap-
pears too large compared to the symbols in the fractions in the middle columns:

\tabulate[ff,rspec={x,0.3,4},rround=2,rhnudge=9,
chnudge={0,9,0},chmath={t,t,s}]

{ \frac{x^2e^x}{(e^x-1)^2}, \frac{x}{e^x-1},
\ln(1-e^{-x}) }[x=0.15][5*]

=⇒

x x2ex

(ex−1)2
x

ex−1 ln(1−e−x)

0.15 0.99813 0.92687 −1.97118
0.45 0.98329 0.79182 −1.01508
0.75 0.95441 0.67144 −0.63935
1.05 0.91298 0.56523 −0.43069

In the next example I transpose this table, not because it is a good example
of a table that might benefit from this, but because it illustrates a problem
that can arise when a multi-function table is transposed. On transposition the
current header row becomes the row variable column:

\tabulate[ff,rspec={x,0.3,4},rround=2,ralign=l,
chnudge={0,9},rules=hB,chstyle=1,transpose]

{ \frac{x^2e^x}{(e^x-1)^2}, \frac{x}{e^x-1},
\ln(1-e^{-x}) }[x=0.15][5*]

=⇒

x = 0.15 0.45 0.75 1.05
x2ex

(ex−1)2 0.99813 0.98329 0.95441 0.91298
x

ex−1 0.92687 0.79182 0.67144 0.56523
ln(1 − e−x) −1.97118 −1.01508 −0.63935 −0.43069

What is immediately noticeable is the disparity in size of the characters forming
ln(1 − e−x) compared to those in the fractions above it. This was the reason for
the chmath={t,t,s} setting in the original table, but rmath is a single value
applying to the whole row variable column, so that solution is not available.

30

Two possibilities come to mind. One is to force the function being tabulated
into scriptstyle by tabulating

\vphantom{\frac11}\scriptstyle\ln(1-e^{-x})

(The phantom ensures the spacing between the rows is the same.) This new
function produces exactly the same values as the previous one did. The other
possibility is to set rmath=d, forcing all members of the row variable column, in
particular the fractions, into displaystyle. With this setting the \scriptstyle
can be omitted (but the phantom retained).

Another example, now using ff=| as the function separator, places the row
variable column on both sides of the table (rpos=3) and uses the o setting (see
numerica.pdf) to indicate that arguments of the trig functions are in degrees:

\tabulate[ff=|,o,rpos=3,rround=0,chnudge=9,
rvar=\theta,rstep=15,rstop=90]

{ \sin \theta | \cos \theta }[\theta=0][*]

=⇒

θ sin θ cos θ θ

0 0.000000 1.000000 0
15 0.258819 0.965926 15
30 0.500000 0.866025 30
45 0.707107 0.707107 45
60 0.866025 0.500000 60
75 0.965926 0.258819 75
90 1.000000 0.000000 90

The table suggests a space saving possibility: since sin and cos are comple-
mentary functions (sin(90 − θ) = cos θ), values in the bottom half of the table
duplicate values in the top half, only with the columns reversed. This is the
reason for the rpos=4 setting discussed in §2.4.6, which enables complementary
functions to be tabulated in ‘half tables’.

2.4 Whole-of-table formatting
There are a number of settings that affect the appearance of the table as a whole,
things like the position of the row variable column, the grouping of function
values in a column into blocks to aid readability, the presence of horizontal
rules, the use of a collective column title, or of a footer row, or display of the
table ‘horizontally’ in rows rather than columns. I discuss these here (Table 2.6).

2.4.1 Title for function-value columns: ctitle

The function-value columns have individual headings, formatted in the various
ways provided by the settings already discussed, but it can also be helpful to
have a collective title for these columns. For instance our table of Einstein
functions in §2.3 would have benefited from this. The need is met with the

31

Table 2.6: Table formatting

key type meaning initial

ctitle token(s) collective title for columns
csubttl token(s) subtitle row for function-

value cols
calign char(r/c/l) column alignment r
headless suppress header row
foot token(s) table-wide footer row
rules char(s) horizontal rule spec. ThB
norules cancel all rules
rpos int (0. . . 4) row variable col. position(s) 1
rbloc integer comma list row block specification
rblocsep length extra space between row

blocks
1ex

transpose show funct. vals in rows
valign char (t/m/b) vertical alignment of table

relative to text baseline
m

ctitle key. This can be set to whatever you like (e.g. ctitle=Fred), taking
care to shield commas with braces. By default, the title is set between math
delimiters ($ signs). For that reason in the example I have placed it inside a
\text command:

\tabulate[ff,rspec={x,0.15,6},rround=2,rhnudge=9,
chnudge={0,9,0},chmath={t,t,s},
ctitle=\text{Einstein functions}]

{ \frac{x^2e^x}{(e^x-1)^2}, \frac{x}{e^x-1},
\ln(1-e^{-x}) }[x=0.15][5*]

=⇒

Einstein functions
x x2ex

(ex−1)2
x

ex−1 ln(1−e−x)

0.15 0.99813 0.92687 −1.97118
0.30 0.99253 0.85749 −1.35023
0.45 0.98329 0.79182 −1.01508
0.60 0.97053 0.72982 −0.79587
0.75 0.95441 0.67144 −0.63935
0.90 0.93515 0.61661 −0.52184

There are two built-in values for the ctitle key: ctitle=*, which forms the
title from the function being tabulated, and ctitle=** which uses the function
and vv-list for the title. Obviously these, particularly the latter, could easily
become too long to be useful. An example of ctitle=** is presented later in

32

§2.4.5, but inclusion of the vv-list in the title in the next example would be
pointless since the row and column variables of the table are the only members
of the vv-list; ctitle=* suffices:

\tabulate[rspec={n,1,5},rround=0,
cspec={m,1,4},chstyle=2,ctitle=*]

{ \cos(m\pi/n) }[n=3,m=2][*4]

=⇒

cos(mπ/n)
n m = 2 m = 3 m = 4 m = 5
3 −0.5000 −1.0000 −0.5000 0.5000
4 0.0000 −0.7071 −1.0000 −0.7071
5 0.3090 −0.3090 −0.8090 −1.0000
6 0.5000 0.0000 −0.5000 −0.8660
7 0.6235 0.2225 −0.2225 −0.6235

2.4.2 Between header & title: csubttl

Some tables need more header or title material than can be comfortably accom-
modated in either row alone. For examples, see HMF Tables 7.9, 17.7, 21.1,
and 26.7. One way of handling this problem is to resort to more complicated
environments in header and title rows. Another, more direct way, is to insert
a row between the header and title rows by means of the key csubttl, a con-
traction of ‘c(olumn variable) subtitle’. (In version 2 of numerica-tables the
name cmidrow was used; that is still available, but deprecated.) Like chead
and ctitle, csubttl is limited to the span of the column variable (or function-
value) columns only. The content of csubttl is entirely up to the user, including
insertion of sufficient & characters and math delimiters (if required).

An example where the subtitle row serves an explanatory role is shown in
the next table. I have used \sfrac from the xfrac package for neater fractions:

\tabulate[ff,rspec={x,1,6,0},chnudge={22.5,18},
ctitle=\text{Hyperbolic functions},
csubttl=\multicolumn{3}{c}{\small$\sinh x=\sfrac12

(e^x-e^{-x}),\ \cosh x=\sfrac12(e^x+e^{-x})$}]
{ \sfrac12\,e^x, \sinh x, \cosh x } [{x}=0][8*]

=⇒

Hyperbolic functions
sinh x = 1/2(ex − e−x), cosh x = 1/2(ex + e−x)

x 1/2 ex sinh x cosh x

0 0.50000000 0.00000000 1.00000000
1 1.35914091 1.17520119 1.54308063
2 3.69452805 3.62686041 3.76219569
3 10.04276846 10.01787493 10.06766200
4 27.29907502 27.28991720 27.30823284
5 74.20657955 74.20321058 74.20994852

33

2.4.3 Suppress/show header row
By default the header row in a table is shown. It carries essential information
as to the table’s contents, but there are occasions when it should be suppressed.
An example occurs in §2.1.2.2 where a table listing fractions of π and their
values is shown. The header there serves no purpose. To suppress it, use the
headless1 setting.

\def\mydata{\sfrac14\,\pi,\sfrac13\,\pi,\sfrac12\,\pi,
\sfrac23\,\pi,\sfrac34\,\pi,\pi}

\tabulate[rdata=\mydata,rverb=1,rvar=k,headless,
norules]{ k }[*]

=⇒

1/4 π 0.785398
1/3 π 1.047198
1/2 π 1.570796
2/3 π 2.094395
3/4 π 2.356194

π 3.141593

2.4.4 Footer row: foot

Some tables have a footer row and numerica-tables allows such a row to be
inserted, but its entire content, with two exceptions, is the responsibility of
the user, including insertion of the necessary number of tab characters &. This
will usually be 1 less than the total number of columns (including row variable
columns) in the table – or some adjustment thereof if you use \multicolumn.
(HMF uses the footer mainly for cryptic descriptions of the accuracy and needs
of interpolation methods.)

You can put into the footer what you wish with the setting foot=<tokens>.
There are two exceptions:

• when foot='' (two single quote marks), suggesting ditto marks, the footer
row is set equal to the header row with one change, the backslash in row
variable headers of the form n\m are converted to forward slashes, e.g.
n/m;

• when foot=*, the footer is set equal to the header in reversed order – the
last item first, and so on. This is useful for tabulating complementary
functions like sine and cosine or, more generally, f(x) and g(x) where
g(x) = f(k − x) for some constant k. Values for the complementary
function are read from the bottom up and require a reversed row variable
column on the right of the table; see the third example in §2.4.6.

1There was a mix-up in the documentation of version 3.1 of numerica-tables between what
was entered in the table of whole-of-table settings and what was described in this section.

34

Footer functions In versions of numerica-tables before version 3 it was
possible to perform certain simple operations on columns – calculate the sum,
the average and maximum and minimum values. This is no longer so in version
3. Not only does it seem tangential to the primary function of the \tabulate
command but it was also acutely dependent on the format of the numbers being
operated on – a change in the number-format option could cause a LATEX error.

2.4.5 Horizontal rules: rules

The booktabs package which numerica-tables uses is most emphatic that one
should ‘1. Never, ever use vertical rules. 2. Never use double rules.’ Most of the
tables proper in HMF lack rules of any kind although closer inspection shows
smaller tables within the text generally are delimited by horizontal rules (often
also with vertical rules). In the various examples in the present document I have
used horizontal rules because these too are tables within text. Some form of
delineation seems necessary although I think I have ‘over ruled’. The question
should always be: is a rule necessary at all? Usually, less is more. (Although
many of HMF ’s tables are inelegantly typeset, I have used it as a valuable
resource for the variety of structures needed to present a multitude of different
kinds of numerical data.)

The rules key allows one to specify precisely which rules are used. The
content of the key is a ‘word’ – a sequence of letters – where the characters have
the significance and default thicknesses – from the booktabs package – shown
in Table 2.7. (To adjust the thickness of rules used, see §2.4.5.3 below.) No
particular order is required in the rules specification; rules=hBT would work
as well as rules=ThB but the latter, reflecting the order of the rules in the table,
is simpler to grasp at a glance.

In previous versions of numerica-tables the initial value of this key was
rules=ThB so that if the rules key was not explicitly set then a rule was auto-
matically drawn at the top of the table, at the bottom of the table, and beneath
the header row. From version 3.2, no initial value is assigned to rules. Instead,
a package option of the same name can be set (see §1) which is initialized to
rules=ThB to maintain previous behaviour. What is gained is that by assigning
a different value to the package option it is now possible for a user to alter the
default behaviour. A norules package option is also available if you want your
tables free of rules by default. The default set by the package option can always
be overridden for an individual table by means of the rules setting.

2.4.5.1 Header and footer rules

The header (resp. footer) rule specified by including h (resp. f) in the rules
specification spans the whole table, from the left of the first column to the right
of the last column. It can give a better visual appearance sometimes to trim
(shorten) these rules both left and right. This is specified by priming the h
(resp. f) in the specification. Thus rules=hf will produce header and footer
rules spanning the whole table; rules=h'f' will produce slightly shorter header

35

Table 2.7: Rules. (In the ‘span’ column, ‘fv’=function-value; ‘rv’=row variable.)

char rule position span trim default rule thickness

T top above table table \heavyrulewidth=.08em
t title below title fv cols .5em \cmidrulewidth=.03em
s subtitle below subtitle fv cols (1 rv col.)

table (2 rv cols)
.5em
.5em

\cmidrulewidth=.03em
\lightrulewidth=.05em

h header below header table \lightrulewidth=.05em
h’ .5em \cmidrulewidth=.03em
f footer above footer table \lightrulewidth=.05em
f’ .5em \cmidrulewidth=.03em
B bottom below table table \heavyrulewidth=.08em

and footer rules trimmed by the default 0.5 em at both ends – unless some other
trim value has been specified; see §2.4.5.3 below.

2.4.5.2 Title and subtitle rules

If t is included in the rules specification, then a rule will be drawn beneath
the title. This will span the function-value columns only and be trimmed at
each end (by default by 0.5 em). If you are also using a subtitle row, between
title and header rows, and want a rule beneath that too, then include s in the
setting – for instance rules=TtshB. (For legacy reasons, m – from ‘midrow’ –
can also be used instead of s.) To my eye rules beneath both title and subtitle
don’t work; a rule beneath the subtitle alone gives a better result – if a rule is
needed at all.

The span of the subtitle rule depends on whether the row variable column is
placed only on one side of the table or on both (rpos<2 or rpos>2). If on only
one then the rule spans only the function-value columns – like the title rule.
If on both then the subtitle rule spans the table but is trimmed by 0.5 em at
each end. To the author’s eye, the extra span in this second case gives a better
sense of the row variable columns as part of the table as a whole rather than as
optional ‘clip ons’ at the edges.

In the example table below, a rule for the column title has been specified
(the t in the setting rules=TthB). Also note the use of ctitle=**. The formula
contains an extra parameter a, assigned a value in the vv-list, so that it now
makes sense to display the vv-list in the column title (the braces around k and
x in the vv-list ensure they don’t display).

\tabulate[rspec={x,0.25,5,2},cspec={k,0.25,3,2},
rhnudge=9,chstyle=2,ctitle=**,rules=TthB]

{ a\sin kx }[a=2/\pi,{k}=3,{x}=0.25][*]

36

=⇒

a sin kx, (a = 2/π)
x k = 3.00 k = 3.25 k = 3.50

0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 −0.068879 −0.223316
1.25 −0.363867 −0.506845 −0.600729

2.4.5.3 Trim and thickness of rules

The trim applied to rules – the amount cut from the ends – is the booktabs’
default value, 0.5 em. To change it, enter the command

\setlength\cmidrulekern{<trim>}

in the preamble where <trim> is a length, something like 0.5em, 2.5mm, etc. (Or,
one could write, e.g. \cmidrulekern=2.5mm.) The new default will apply to the
settings h', f', t and sometimes s, since these all use booktabs’ \cmidrule.

To change the thickness of a rule from its default value, enter new val-
ues in the preamble for any or all of \heavyrulewidth, \lightrulewidth,
\cmidrulewidth, e.g.

\setlength\heavyrulewidth{<width>}

where <width> is a length. The values listed in Table 2.7 are the default values,
from the booktabs package, used in numerica-tables.

2.4.6 Second row variable column: rpos=3,4

The settings rpos=0,1,2 have been discussed earlier; rpos=3 duplicates the row
variable column on the right of the table, with the proviso that if the header of
the row variable column on the left is automatically generated and like x\k, the
header on the right is changed to a form like k/x. Repeating the first example
of §2.2.2.2 but with the setting rpos=3,

\tabulate[rpos=3,rspec={x,0.2,5},
ccspec={k,2,cstop=7,chnudge=18]

{ \sin kx }[k=3,x=0.2][4*]

=⇒

x\k 3 5 7 k/x

0.2 0.5646 0.8415 0.9854 0.2
0.4 0.9320 0.9093 0.3350 0.4
0.6 0.9738 0.1411 −0.8716 0.6
0.8 0.6755 −0.7568 −0.6313 0.8
1.0 0.1411 −0.9589 0.6570 1.0

An example of using rpos=3 in a multi-function table is provided near the end
of §2.3.

37

The rpos key can also take the value 4. rpos=4 adds the row variable column
to both left and right sides of the table, but the values displayed in the right
column are a function of those in the left column (rpos=3 corresponds to the
function being the identity). The value of the key rvar' specifies the function
used.

\tabulate[rpos=4,rspec={x,0.5,5,2},rhnudge=9,
cspec={k,2,3},chstyle=2,ctitle=*,

rvar'=x^2,rhnudge'=4]
{ \sin(kx^2) }[k=3,x=1][4*]

=⇒

sin(kx2)
x k = 3 k = 5 k = 7 x2

1.00 0.1411 −0.9589 0.6570 1.00
1.50 0.4500 −0.9678 −0.0420 2.25
2.00 −0.5366 0.9129 0.2709 4.00
2.50 −0.0994 −0.1652 −0.2302 6.25
3.00 0.9564 0.8509 0.1674 9.00

If no value is given to rvar' (or if rvar'=*) then the row variable column on
the right of the table is the left column reversed (with the possible exception of
its header).

• Note: rpos=4 is incompatible with the transpose setting. If both settings
are used, the table will be transposed as if rpos=3.

When chstyle is not zero, as in the example above, and rhead' is omitted
or empty, the header for the right-hand row variable column is automatically
generated, displaying the value of the rvar' key. The positioning of the right-
hand row variable header can be adjusted with the use of rhnudge' as in the
example. If chstyle=0, the header is up to the user to supply by assigning a
value to the key rhead'. In all cases, rhead' will override any automatically
generated header.

The sine and cosine are complementary functions; when working in degrees
(the o setting in the next example), cos θ = sin(90 − θ). We can exploit this
fact to halve the table size needed to tabulate the two functions. The following
‘toy’ example (see HMF Tables 4.10–4.12 for the real thing) of a multi-function
table (hence the ff setting) also gives an example of the use of the foot=*
setting, and the primed versions of header and footer rules. Note also the use
of an expression in the third element of rspec. The rhead' setting is of no
significance; it simply avoids a large block of white space.

\tabulate[ff,o,rpos=4,rules=Th'f'B,foot=*,calign=c,
rspec={\theta,9,1+45/9,0},

rvar'=90-\theta,rhead'=-]
{ \sin\theta,\cos\theta }[\theta=0][*]

38

=⇒

θ sin θ cos θ −
0 0.000000 1.000000 90
9 0.156434 0.987688 81

18 0.309017 0.951057 72
27 0.453990 0.891007 63
36 0.587785 0.809017 54
45 0.707107 0.707107 45
− cos θ sin θ θ

The values of sines from 0 to 45 degrees are read downwards from the first
column of function-values, and from 45 to 90 degrees are read upwards from the
second column of function-values. For cosines it is downwards from the second
column and upwards from the first column. The reversed footer line indicates
the change of columns to use.

Although there is a significant space saving with tables like this, they are not
‘kind to the reader’. They require a certain concentration to read and should
be avoided unless space is seriously constrained. HMF Tables 6.1 and 6.2 are
tables of the gamma function and its relatives where y = x − 1 is used in the
row variable column on the right (stemming from x! = Γ(x − 1)); HMF Table
6.5 in effect uses ⟨1/x⟩ (the nearest integer to 1/x) for the row variable on the
right.

2.4.7 Separating blocks of rows: rbloc

Readability of long columns of figures can be aided by adding extra white space
between blocks of rows. This is achieved with the rbloc key:

rbloc = <comma list of positive integers>

specifies how many rows belong to each block. For example, rbloc={5,5,6}
breaks the table into blocks of 5 rows, 5 rows, then 6 rows. If the number of
rows in the table is greater than the sum of the entries in the comma list, then
division into blocks continues as specified by the last entry in the comma list.
Thus rbloc=5 (strictly rbloc={5} but the braces can be omitted in this case
since no comma is enclosed) divides a table into blocks of 5 rows; rbloc={1,5}
divides a table into 1 row followed by blocks of 5 rows. A division of this kind
may be appropriate when, say, the row variable runs from 0 to 1 in increments
of 0.1 – there are 11 rows of which the first (when the row variable is zero) may
have distinctive values.

The dominant practice in HMF is division into blocks of (generally) 5 rows,
many of which start with a zero value for the row variable. Rather than isolate
this initial value, they include it in the first block of 5, then continue with blocks
of 5 until a single isolated row is left at the bottom of the page or the table.
There seems to be a psychological need to finish a page or table with the row
variable set to a nice round number. Thus: tabulate from 0 to 10 rather than
0 to 9, from 0 to 1 rather than 0 to 0.9, and even from 0 to 30 or 0 to 2 rather

39

than 0 to 29 or 0 to 1.9. Using blocks of 5 the consequence is that there is
always an isolated line at the end – a kind of punctuation mark to signal the
end of the page or the table.

In the next example I have divided the rows into blocks of 4 but separated
the special values of the first and last rows by setting rbloc={1,4}.

\tabulate[ff,o,rspec={\theta,10,1+90/10,0},rbloc={1,4}]
{ \sin\theta, \cos\theta }[\theta=0][*]

=⇒

θ sin θ cos θ

0 0.000000 1.000000
10 0.173648 0.984808
20 0.342020 0.939693
30 0.500000 0.866025
40 0.642788 0.766044
50 0.766044 0.642788
60 0.866025 0.500000
70 0.939693 0.342020
80 0.984808 0.173648
90 1.000000 0.000000

2.4.7.1 Adjusting the extra space rblocsep

By default numerica-tables sets the extra space between blocks of rows at
1 ex. This value can easily by changed with the setting rblocsep=<length>.
The units need to be included in the specification.

2.4.8 ‘Horizontal’ tables: transpose

Traditionally in a book of mathematical tables the function values are arranged
vertically in columns. This is why the row variable has been given primacy
in numerica-tables. But that may not always be what is wanted nor make
the best use of available space. From version 3.2.0 of numerica-tables there
is a setting, transpose, that will convert a ‘vertical’ table (function values in
columns) to a ‘horizontal’ table (function values in rows). The table is con-
structed as if the function values will be listed vertically in columns, but with
transpose entered in the settings option the table is displayed with the function
values listed in rows.

(Strictly, transpose ‘is really’ transpose=1, but transpose alone suffices;
transpose=0 corresponds to the default situation of function values in columns.)

With transposition, the row variable column and header row are inter-
changed. The building of the row variable column and header row occurs before
transposition. Hence rround and chround are applied to these elements before
transposition. It is the rounded values of the row and column variables that
are used to calculate function values. But ‘cosmetic effects’ like placement of

40

the (new) row variable column or (new) header row, as well as header styling
(chstyle), alignment (ralign, calign), nudging (rhnudge, chnudge), fonts
(rfont, chfont), and choice of display-, text- or scriptstyle (rmath, chmath)
are applied after transposition. A footer row is created after transposition.

• Transposition does not work for tables using a second row variable column
with rpos=4. Such a table is transposed, but treated as if rpos=3.

In a ‘shallow’ transposed table – like one with a single row of function values
– rules should be used sparingly if at all. See the example at §2.1 where the
norules setting is used. In the following example, with three function-value
rows resulting from the transposition, a single header rule suffices.

\tabulate[rspec={x,0.2,5},ralign=c,cspec={k,0.25,3,2},
chstyle=1,rules=h',transpose]

{ \sin kx }[k=3,x=0.2][*]

=⇒

k x = 0.2 0.4 0.6 0.8 1.0
3.00 0.564642 0.932039 0.973848 0.675463 0.141120
3.25 0.605186 0.963558 0.928960 0.515501 −0.108195
3.50 0.644218 0.985450 0.863209 0.334988 −0.350783

2.4.9 Table placement
Tables can be nudged vertically with the LATEX commands \bigskip, \medskip,
\smallskip, usually about 1, 1/2 and 1/4 line spaces (with stretch and shrink).
booktabs provides \abovetopsep and \belowbottomsep, both set by default to
0ex and easily changed by writing, e.g. \setlength\abovetopsep{1.25ex} (or
\abovetopsep=1.25ex) if you want to insert 1.25ex of space above the table
(perhaps to fit captions).

2.4.9.1 Vertical alignment

By writing valign=<char> where <char> is one of t, m or b the vertical align-
ment of the table can be set relative to the text baseline: t aligns the top of
the table, b the bottom of the table, and m the middle of the table with the text
baseline. By default valign=m is set. Repeating an example from earlier (§2.1)
I have added letters A, B, C to show where the baseline is. Clearly the top,
middle and bottom of the respective tables aligns with the baseline.

A \tabulate[valign=t,rvar=x,rstep=0.2,rows=5]
{ \sin x/\cos x }[x=0][*] \quad

B \tabulate[rspec={x,0.2,1/0.2}]
{ \tan x }[x=0][*] \quad

C \tabulate[valign=b,rspec={x,0.2,5}]
{ \sqrt{\sec^2 x - 1} }[x=0][*]

41

=⇒ A
x sin x/ cos x

0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

B

x tan x

0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

C

x
√

sec2 x − 1
0.2 0.202710
0.4 0.422793
0.6 0.684137
0.8 1.029639
1.0 1.557408

As explained in §2.1.3.1, tables can be adjoined to give the appearance of a
single larger table. If tables with different numbers of rows are adjoined in this
manner, then a middle alignment fails and a top alignment is necessary (so that
the header rows of the tables align).

2.5 Formatting function values
In previous tables in this document, function values have generally been limited
to a fairly narrow range of values. What happens when they span orders of
magnitude? Can scientific notation, expressly designed to cope with such dif-
fering orders of magnitude, be accommodated in a table in a natural way? Can
rows or columns – or individual cells – be rounded to different rounding values?
Can we indicate differences? Or form tables of function values in fraction form?
These and similar questions are our concern here.

2.5.1 Trailing optional argument
The primary tool for function-value formatting is the trailing optional argument
of the \tabulate command where the rounding value is specified, padding with
zeros is set or not (generally set in tables), scientific notation is set or not, and
fraction-form output can be specified.

2.5.1.1 Fraction-form output

Function values in a table can be presented in fraction form, but such output
requires far more computation than other forms since finding denominators at
the specified accuracy is an iterative process that needs doing for every function
value. But for small tables it is feasible. In the tables below, approximations
to small positive and inverse powers of π are listed to 2 and 4 decimal places
of accuracy. All the powers listed can be approximated to 4-place accuracy by
3-figure denominators (and π2 by a 2-figure denominator).

42

Table 2.8: Formatting function values

key type meaning initial

(pad) int t-notation phantom padding
signs int sign handling for function values 0
diffs int insert differences, pre-pad with 0s 0
round tokens row/col. dependent rounding value

Q? tokens special cell conditional
A! tokens special cell formatting

\def\mypi{\pi,\pi^2,\pi^3,\pi^{\sfrac12},\pi^{\sfrac13}}
\tabulate[rdata=\mypi,rverb=1,rpos=1,rvar=k,ralign=l,

chead={\small 2 places}]{ k }[2/s] \qquad
\tabulate[rdata=\mypi,rverb=1,rpos=1,rvar=k,ralign=l,

chead={\small 4 places}]{ k }[4/s]

=⇒

‘ 2 places

π 22/7
π2 148/15
π3 2760/89

π
1/2 23/13

π
1/3 19/13

‘ 4 places

π 355/113
π2 227/23
π3 4930/159

π
1/2 257/145

π
1/3 186/127

A second example shows that all four of numerica’s built-in constants and
their first few inverse powers can be approximated to 5 decimal places with
3-figure denominators:

\tabulate[rdata={\pi,e,\phi,\gamma},rverb=1,/max=1000,
rvar=k,cspec={n,1,4},chstyle=3,chnudge=9,rules=TthB,
ctitle=\abs{k^{\sfrac1n}-p/q}<0.5\times10^{-5}]

{ k^{\sfrac1n} }[n=1,k=1][/s5]

=⇒

|k1/n − p/q| < 0.5 × 10−5

k k
1/1 k

1/2 k
1/3 k

1/4

π 355/113 296/167 517/353 667/501
e 1264/465 582/353 1210/867 217/169
ϕ 610/377 491/386 668/569 397/352
γ 228/395 487/641 194/233 421/483

2.5.1.2 Scientific notation

Scientific notation – put x in the trailing optional argument – is generally inap-
propriate for use in tables; see the first table below. Entering xx (second table)

43

so that the notation extends to numbers in the range [1, 10) helps, particularly
with the left alignment of the function values, but the result is wasteful of space
and the repetition of the ‘×10’ is distracting and would be more so for a larger
table. The x specification should be used in tables, if at all, only for small tables
and special cases. The t option is much preferred; see §2.5.2 following.

\tabulate[rspec={x,1,6,0},chnudge=58]
{ e^x}[x=-2][*x]\qquad

\tabulate[rspec={x,1,6,0},calign=l,chnudge=45]
{ e^x}[x=-2][*xx]

=⇒

x ex

−2 1.353353 × 10−1

−1 3.678794 × 10−1

0 1.000000
1 2.718282
2 7.389056
3 2.008554 × 101

x ex

−2 1.353353 × 10−1

−1 3.678794 × 10−1

0 1.000000 × 100

1 2.718282 × 100

2 7.389056 × 100

3 2.008554 × 101

2.5.2 The t option
HMF uses a special notation for coping with function values spanning different
orders of magnitude. This notation can be invoked by inserting t in the trail-
ing optional argument. For the previous two tables the notation gives a more
compact and visually appealing result:

\tabulate[rspec={x,1,2*3+1,0},chnudge=24]
{ e^x}[x=-3][*t]\qquad

\tabulate[rspec={x,1,2*3+1,0},chnudge=24]
{ e^x}[x=-3][*tt]

=⇒

x ex

−3 (−2) 4.978707
−2 (−1) 1.353353
−1 (−1) 3.678794

0 1.000000
1 2.718282
2 7.389056
3 (1) 2.008554

x ex

−3 (−2) 4.978707
−2 (−1) 1.353353
−1 (−1) 3.678794

0 (0) 1.000000
1 (0) 2.718282
2 (0) 7.389056
3 (1) 2.008554

Doubling the t in the trailing optional argument (second table) extends the
notation to numbers in the range [1, 10) – as doubling x extends normal scientific
notation to this range.

2.5.2.1 Padding the exponent: (pad)

In the second table one might quibble at the lack of alignment of the left paren-
theses. HMF tends to align these and numerica-tables offers the setting

44

(pad) = <integer>

to achieve the effect. (The parentheses are part of the key – a reminder of the
t-form of scientific notation.) <integer> is the number of digits/characters to
pad to. Repeating the last two tables with the setting (pad)=2 produces the
following results:

\tabulate[rspec={x,1,2*3+1,0},chnudge=24,(pad)=2]
{ e^x}[x=-3][*t]\qquad

\tabulate[rspec={x,1,2*3+1,0},chnudge=24,(pad)=2]
{ e^x}[x=-3][*tt]

=⇒

x ex

−3 (−2) 4.978707
−2 (−1) 1.353353
−1 (−1) 3.678794

0 1.000000
1 2.718282
2 7.389056
3 (1) 2.008554

x ex

−3 (−2) 4.978707
−2 (−1) 1.353353
−1 (−1) 3.678794

0 (0) 1.000000
1 (0) 2.718282
2 (0) 7.389056
3 (1) 2.008554

Examples in HMF of the style exemplified by the first table are, among others,
Tables 8.6, 9.2, 20.1, and of the style exemplified by the second table, among
many, Tables 9.9, 10.5, 13.1, 14.1, 19.1. But note:

• the (pad) setting is relevant only when the t option is used in the trailing
number-format argument of the \tabulate command and should have no
effect otherwise.

2.5.2.2 Accommodating signs in the t-notation

Instead of ex as the test function, use ex − 1. Now there are positive, zero and
negative function values to contend with. Recall that in the t-notation the
exponent is the parenthesized integer part of a number and the significand the
following decimal figures. numerica-tables offers the signs key to align (or
not) the exponents. The setting is

signs = <integer>

Besides the do-nothing default (signs=0 or omitted), there are four effective
values for <integer>:

• signs=2 inserts a + sign between exponent and significand of every non-
negative number;

• signs=1 inserts a + sign between exponent and significand of every non-
negative number that immediately precedes or follows a negative number;

45

• signs=-1 inserts a + sign between exponent and significand of any non-
negative number that immediately precedes or follows a negative number,
and inserts a phantom + sign between exponent and significand of every
other non-negative number;

• signs=-2 inserts a phantom + sign between exponent and significand of
every non-negative number;

In the following examples, signs=-2, signs=-1 and signs=2, all give acceptable
results.

\tabulate[rspec={x,1,2*3+1,0},(pad)=2,signs=-2]
{ e^x-1}[x=-3][4*tt] \qquad

\tabulate[rspec={x,1,2*3+1,0},(pad)=2,signs=-1]
{ e^x-1}[x=-3][4*tt] \qquad

\tabulate[rspec={x,1,2*3+1,0},(pad)=2,signs=2]
{ e^x-1}[x=-3][4*tt]

=⇒

x ex − 1
−3 (−1) −9.5021
−2 (−1) −8.6466
−1 (−1) −6.3212

0 (0) 0.0000
1 (0) 1.7183
2 (0) 6.3891
3 (1) 1.9086

x ex − 1
−3 (−1) −9.5021
−2 (−1) −8.6466
−1 (−1) −6.3212

0 (0) +0.0000
1 (0) 1.7183
2 (0) 6.3891
3 (1) 1.9086

x ex − 1
−3 (−1) −9.5021
−2 (−1) −8.6466
−1 (−1) −6.3212

0 (0) +0.0000
1 (0) +1.7183
2 (0) +6.3891
3 (1) +1.9086

In HMF Table 23.2 illustrates signs=-2; Tables 10.1, 13.1, 14.1, 19.1 among
many others illustrate signs=-1; and Tables 9.4, 10.6, 20.2, 22.11 among others
illustrate signs=2.

For signs=1, see the second table in the next example.

2.5.3 Indicating signs outside the t-notation
The signs key is not limited to the t-notation. In the following tables where the
notation is not used, positive values for the key, including signs=1, give good
results. The third table, corresponding to signs=0, shows that the comment
extends to non-negative values of the signs key.

\tabulate[rspec={x,0.1,7},(pad)=2,signs=2]
{ 10\sin 5x}[x=-0.3][*4]\qquad

\tabulate[rspec={x,0.1,7},(pad)=2,signs=1]
{ 10\sin 5x}[x=-0.3][*4]\qquad

\tabulate[rspec={x,0.1,7},(pad)=2]
{ 10\sin 5x}[x=-0.3][*4]

46

=⇒

x 10 sin 5x

−0.3 −9.9749
−0.2 −8.4147
−0.1 −4.7943

0.0 +0.0000
0.1 +4.7943
0.2 +8.4147
0.3 +9.9749

x 10 sin 5x

−0.3 −9.9749
−0.2 −8.4147
−0.1 −4.7943

0.0 +0.0000
0.1 4.7943
0.2 8.4147
0.3 9.9749

x 10 sin 5x

−0.3 −9.9749
−0.2 −8.4147
−0.1 −4.7943

0.0 0.0000
0.1 4.7943
0.2 8.4147
0.3 9.9749

HMF seems to use signs=2 when the sign of the function values changes every
few entries and signs=1 when there are runs of entries of the same sign. Over
the range tabulated here for 10 sin 5x, they would use the middle table of the
three, signs=1.

2.5.4 Cell-, row-, column-dependent rounding
In §2.5.1.1, we created two tables of fraction-form approximations to simple
powers of π, one accurate to two places of decimals, one to four. From version 3.1
(as distinct from version 3.0) numerica-tables offers the means of producing
tables with rounding values depending on position in the table. This is effected
through the key round which sets the rounding value as a function of row and
column variables. In practice this usually means dependence on row or column
variable alone rather than both. In the example below, the rounding equals
the row variable value, round=r, producing fractional approximations to simple
powers of π at rounding values from 1 to 5, and learn that all these powers can
be approximated to 5 decimal places with 3 figure denominators – π2 only just.
(The command \abs used in ctitle is defined in numerica.)

\tabulate[ff,rspec={r,1,5},round=r,/max=999,chstyle=2,
ctitle=\abs{\pi^k-\sfrac mn}<0.5\times10^{-r}]

{ \pi,\pi^2,\pi^3,\pi^{1/2},\pi^{1/3}}[r=1][/s]

=⇒

|πk − m/n| < 0.5 × 10−r

r π π2 π3 π1/2 π1/3

1 19/6 59/6 31/1 7/4 3/2
2 22/7 148/15 2760/89 23/13 19/13
3 267/85 227/23 4589/148 39/22 41/28
4 355/113 227/23 4930/159 257/145 186/127
5 355/113 9840/997 14821/478 296/167 517/353

Another place where a variable rounding value can be of value is when a
function being tabulated changes slowly for each step in the row variable value.
The value of the cosine for instance changes from 1.0000 to 0.9848 between 0◦

and 10◦. Part of a table of the cosine might be something like the following,
where values in the initial rows of the table are rounded to a higher value
than in later rows. In the example round is set to an expression in the row

47

variable \theta involving the boolean expressions \theta<11 and \theta>10
which evaluate to 0 or 1 depending on the value of \theta. Thus round takes
the value 6 for the initial rows of the table and the value 4 thereafter.

\tabulate[o,rspec={\theta,1,6},calign=l,chnudge=15,
round=6(\theta<11)+4(\theta>10)]

{ \cos\theta }[\theta=8]

=⇒

θ cos θ

8 0.990268
9 0.987688

10 0.984808
11 0.9816
12 0.9781
13 0.9744

2.5.5 Differences: diffs

In fine-grained tables where function values change only slowly from entry to
entry it can be helpful to include a difference entry between function-value
entries as an aid to interpolation (and a test of eyesight). By entering

diffs = <non-negative integer>

the \tabulate command will include differences in a table. The <non-negative
integer> is the maximum number of digits in a difference.

\tabulate[rspec={x,0.01,6,2},diffs=3,
rhnudge=9,chnudge=21]

{ \sinh x }[x=1,k=1][*4] \qquad
\tabulate[rspec={x,0.01,6,2},diffs=2,

rhnudge=9,chnudge=25]
{ \sinh x }[x=1][*4]\qquad

\tabulate[rspec={x,0.01,6,2},diffs=4,
rhnudge=9,chnudge=30]

{ \sinh x }[x=1][*4]

=⇒

x sinh x

1.00 1.1752
1.01 1.1907 155

1.02 1.2063 156

1.03 1.2220 157

1.04 1.2379 159

1.05 1.2539 160

x sinh x

1.00 1.1752
1.01 1.1907 155

1.02 1.2063 156

1.03 1.2220 157

1.04 1.2379 159

1.05 1.2539 160

x sinh x

1.00 1.1752
1.01 1.1907 0155

1.02 1.2063 0156

1.03 1.2220 0157

1.04 1.2379 0159

1.05 1.2539 0160

I have deliberately chosen the settings in the first table – diffs=3 – to give a
good result. With the default right alignment of the function-value columns, it

48

is easy to get this wrong. The evidence will be either in the misalignment of the
first row of function values (second table) or unnecessary padding of differences
with leading zeros (third table). It is a good idea to create your table first, see
how function values change between successive rows and judge how many digits
there will be in a difference. When the diffs setting is too small, function
values in the first row are misaligned, the amount depending on how much too
small. (A left alignment of the function-value column is another way of tackling
this issue.) When the diffs setting is too big, alignment is fine but differences
are padded with unnecessary leading zeros, meaning the column header will
need a bigger nudge to bring it into alignment.

In the next example the function is decreasing, showing how it is the absolute
value of the difference between successive function values that is tabulated. A
difference is always a non-negative value.

\tabulate[rspec={x,0.01,6,2},diffs=2,
rhnudge=9,chnudge=21]

{ e^{-x^2} }[x=0.05][*4]

=⇒

x e−x2

0.05 0.9975
0.06 0.9964 11

0.07 0.9951 13

0.08 0.9936 15

0.09 0.9919 17

0.10 0.9900 19

2.5.6 Formatting special values: Q? and A!

You may wish to highlight or display in some special way a particular func-
tion value or values. \nmcTabulate has two related settings that enable this:
Q?=<tokens> and A!=<tokens>. As the names suggest: Question? and Answer!

The question should be an expression that l3fp can digest and produce a
boolean answer to (1 for ‘true’, 0 for ‘false’). This is not a LATEX expression but
an l3fp expression.2 For the user it should suffice to know that an expression
formed from decimal numbers (but l3fp knows only the decimal dot), paren-
theses (), the familiar arithmetic symbols, +, -, *, / and ^, relation symbols
<, >, = and combinations like != (for ̸=), >= (for ≥), and <= (for ≤) will be
digested by l3fp. In addition there are || for logical Or, && for logical And, and
! for logical Not; exp(1) for e and pi (no backslash) for π. numerica-tables
provides MAX and MIN for the maximum and minimum function values tabulated,
and uses @ to denote the function value of the current cell.

So, a query might be Q?=@<0, Is the current function value negative?, or
Q?={@>=pi}, Is the current function value greater than or equal to π? (The

2Documentation about l3fp can be found in interface3.pdf, which is part of the l3kernel
bundle.

49

braces hide the equality sign.) Q?={@=MIN} (again note the braces) is the ques-
tion: Is the current function value equal to the minimum function value for the
whole table?

The answer must be in the form of a LATEX 2ε formatting statement, again
using @ to denote the function value of the current cell. Thus A!=\mathbf{@} is a
valid answer; so is A!=\color{red}{@} (provided you have \usepackage{color}
in the preamble); and so is A!=(@). Another valid answer is A!= , meaning
that function values satisfying the Q? question are omitted from the output.

This can be useful to suppress ‘irrelevant’ values in particular contexts. For
example, the non-zero values of \binom{n}{m}, displaying as

(
n
m

)
, are the ones of

interest. Rather than cluttering the table with 0s, suppress them, first by finding
them (Q?={@=0}), and then by excising them (A!=). The table suppresses
display of the header row with the headless setting and instead displays it in
the footer with the foot='' setting, automatically changing what would have
been n\m in the header to n/m in the footer.

\tabulate[rspec={n,1,5},rhnudge=-18,rfont=bf,chfont=bf,
cspec={m,1,5},ctitle=\binom nm\qquad,
headless,rules=f',foot='',Q?={@=0},A!=]

{ \binom{n}{m} }[n=1,m=1]

=⇒

(
n
m

)
1 1
2 2 1
3 3 3 1
4 4 6 4 1
5 5 10 10 5 1

n/m 1 2 3 4 5

2.5.6.1 Star option: \nmcTabulate*

If the Q? question is satisfied by at least one function value then adding a
star (asterisk) to the \tabulate command will display the first such instance.
Like other starred commands in the numerica suite (\eval*, info*, \macros*,
\constants*, \iter*, \solve* and \recur*), \tabulate* outputs a single
number. Using the star means you do not need an answering A! to the query
Q? since no formatting of table values is involved.

\tabulate*[rspec={n,1,12},cspec={m,1,4)},
Q?={@<-1e-14||@>0.5+1e-14}]

{ \cos(m\pi/n) }[n=4,m=2][*4]

=⇒ 0.6235. Indeed, if you omit the Q? setting from the previous table so that all
function values are visible then this is the value that follows 0.5000 in the m=2
column, the first function value encountered outside the interval [0, 0.5]. (The
1e-14 is to ensure rounding errors don’t give a spurious result.)

If you want the maximum value that has been tabulated then, from version
3 of numerica-tables, you do not even need the query: when \tabulate is

50

starred, Q? is initialized behind the scenes to @=MAX. Thus, repeating the example
from §2.2, a visual check of the table shows that the starred command has,
indeed, isolated the maximum value displayed:

\tabulate[rspec={x,0.2,6},cspec={k,2,4},chnudge=27]
{ \sin kx }[k=3,x=0] $\longrightarrow

\tabulate*[rspec={x,0.2,6},cspec={k,2,4},chnudge=27]
{ \sin kx }[k=3,x=0] $

=⇒

x\k 3 5 7 9
0.2 0.564642 0.841471 0.985450 0.973848
0.4 0.932039 0.909297 0.334988 −0.442520
0.6 0.973848 0.141120 −0.871576 −0.772764
0.8 0.675463 −0.756802 −0.631267 0.793668
1.0 0.141120 −0.958924 0.656987 0.412118
1.2 −0.442520 −0.279415 0.854599 −0.980936

−→ 0.98545

Package option There is a package option Q?* available which can be set to
give some other default query than @=MAX if you so wish. For instance

\usepackage[Q?*={@=MIN}]{numerica-tables}

makes ‘what is the minimum value tabulated?’ the default query for a \tabulate*
command. Or, Q?*=@>0 makes ‘what is the first positive value encountered?’
the default query for a \tabulate* command, and so on.

Errors If no function value satisfies a query then a message is generated:

\tabulate*[rspec={n,1,12)},cspec={m,1,4},Q?=@>1]
{ \cos(m\pi/n) }[n=4,m=2][*4]

=⇒ !!! No table value satisfies query Q? in: settings. !!!
Note that the same message is presented if the error arises from the package
option query, which may well be confusing (for a moment) since there is no
explicit query present in the settings option.

Scientific notation If you want the number output in scientific notation
when the star option is chosen, then enter the exponent mark in the trailing
number-format option of the \tabulate* command. This is straightforward
for a mark like the commonly used letter e, but remember that if you enter
x you will need to place the \tabulate* command between math delimiters,
otherwise the \times symbol resulting from the x option will generate a LATEX
error (‘Missing $ inserted’). Remembering the $ signs gives, e.g.,

$ \tabulate*[rspec={n,1,12},cspec={m,1,4},
Q?={@<-1e-14||@>0.5+1e-14}]

{ \cos(m\pi/n) }[n=4,m=2][*4x] $

=⇒ 6.2349 × 10−1.

51

2.6 Other matters
Here I group items that do not fit naturally into the earlier categories.

2.6.1 Nesting
A \tabulate command can be nested within other commands from the numerica
suite, and those other commands can be nested within a \tabulate command.

Occasionally one might want to extract a value from a table to insert in
another command. This can be done by nesting a \tabulate* command with
an appropriate Q? setting within the other command. In fact, from version 2
of numerica on, the star is unnecessary. All we require is that the Q? setting is
satisfied by at least one tabulated function value.

\eval[env=$]{(\tabulate
[rspec={n,1,15},cspec={m,1,5},Q?={@=MAX}]

{ \cos(m\pi/n) }[n=4,m=2][*4])\sinh t +
(\tabulate[rspec={n,1,15},cspec={m,1,5},Q?={@=MIN}]

{ \sin(m\pi/n) }[n=4,m=2][*4])\cosh t }
[t=2][4]

=⇒ (0.9397) sinh t + (− 1.0000) cosh t = −0.354, (t = 2).
Forming the table

\tabulate[rspec={n,1,15,0},rpos=2,rules=Tth,
cspec={m,1,5},ctitle=*,chstyle=2]

{ \cos(m\pi/n) }[n=4,m=2][*4]

for the cosine (not presented here) and the table

\tabulate[rspec={n,1,15,0},rpos=2,rules=Tth,
cspec={m,1,5},chstyle=2,ctitle=*]

{ \sin(m\pi/n) }[n=4,m=2][*4]

for the sine (also not presented here) and checking the entries shows that indeed
the maximum and minimum values are 0.9397 and −1.0000 respectively.

If the Q? setting is not satisfied by any function value a familiar error message
is shown – with a tweak:

\eval{$ (\tabulate
[rspec={n,1,15},cspec={m,1,5},Q?=@>2]

{ \cos(m\pi/n) }[n=4,m=2][*4])\sinh t
$}[t=2][4]

=⇒ !!! No table value satisfies query Q? in: settings (2). !!!
Here, the (2) tells us that the message refers to a command at the second level,
a nested command.

A more likely situation is to want to nest other commands within a \tabulate
command. I give an example in the documentation to the associated package
numerica-plus about timing of signals between points fixed on a rotating disk.

52

2.6.2 Saving tables to file
In earlier versions of numerica-tables it was possible to save a table to file, or
a row or a column or a particular value from a table, by giving a setting reuse
a value. From version 3.0.0, in the interests of simplifying use (and avoiding
code complications) the reuse setting has been discontinued. The \reuse (or
\nmcReuse) command remains (as part of the numerica package) and can be
used to save the most recent table to file.

In the following example, a table is created and then saved to file and to the
macro \mytable by the subsequent \reuse command:

\tabulate[rspec={x,0.25,5,2},rhnudge=9,rules=TthB,
cspec={k,0.25,3,2},chstyle=2,ctitle=**]

{ a\sin kx }[a=2/\pi,{k}=3,{x}=0.25][*]
\reuse[renew]{mytable}

=⇒

a sin kx, (a = 2/π)
x k = 3.00 k = 3.25 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 −0.068879 −0.223316

Now test the content of the control sequence

\mytable =⇒

a sin kx, (a = 2/π)
x k = 3.00 k = 3.25 k = 3.50

0.00 0.000000 0.000000 0.000000
0.25 0.433945 0.462191 0.488633
0.50 0.635025 0.635685 0.626425
0.75 0.495337 0.412111 0.314439
1.00 0.089840 −0.068879 −0.223316

Yes, \mytable contains the table. The macro and its contents have also been
saved to file, the .nmc file of the current document, hence numerica-tables.nmc
in the present instance. The contents of this file can be edited in a text editor,
or some limited file operations are possible with the \reuse command. These
have been described in the associated document numerica.pdf.

2.6.3 Viewing the LATEX form
In previous versions of numerica-tables the dbg and view settings were dis-
abled. In version 3, they have been enabled to the extent that the LATEX form of
a table can be viewed by entering either dbg=11 or, less nerdishly, view into the
settings option of \nmcTabulate. In the example a familiar table is specified
and built in LATEX and its form displayed with the view setting:

53

\tabulate[view,rspec={x,0.2,5}]
{ \sin x }[x=0.2]

=⇒

LaTeX: \begin {tabular}[m]{rr}\toprule $x\mkern 0mu$&$\textstyle \sin x\mkern
0mu$\\ \midrule ${0.2}$&0.198669\\ ${0.4}$&0.389418\\
${0.6}$&0.564642\\ ${0.8}$&0.717356\\ ${1}$&0.841471\\
\bottomrule \end {tabular}

54

Chapter 3

Reference summary

3.1 Commands defined in numerica-tables

\nmcTabulate, \tabulate

Package options

• default rule configuration: rules, norules; see §§1.1, 2.4.5.

• default query for \tabulate*: Q?*; see §2.5.6.1.

3.2 Settings for \nmcTabulate

Row variable specification: uniform case

See §2.1.1.

key type meaning comment

rvar token(s) row variable
rstep real num. step size
rstop real num. stop value excludes rows
rows int number of rows excludes rstop
rspec comma list {rvar, rstep, rows} short form spec.
rround int rounding default: 1

55

Row variable specification: non-uniform case

See §2.1.2.

key type meaning comment

rfunc token(s) formula for row var. values
rdata comma list or

macro
list or macro (containing
list) of row var. values

rfile chars filepath/filename file contains list of
row var. values

rdelim char item separator for rdata or
rfile lists

defaults to , or ;
depending as . or ,
is decimal mark

rverb fp (0/0.5/1) display rdata, rfile values
verbatim (1), or slash
fractions formatted (0.5)

initialized to 0

Row variable column formatting

See §2.1.3.

key type meaning initial

rpos int (0. . . 4) column placement 1
ralign char (r/c/l) horizontal alignment r
rfont chars font (\math<chars>)
rhead tokens header
rhnudge fp nudge header <fp> mu 0
rhsize int (-4. . . 5) font size relative to

0=\normalsize
0

rmath char (s/t/d) script-, text-, displaystyle t
rvar’ tokens 2nd row variable col. spec.
rhead’ tokens header of 2nd row var. col.

(if it exists)
rhnudge’ fp nudge 2nd row var. col.

header <fp> mu
0

56

Column-variable specification

See §2.2.

key type meaning comment

cvar token(s) column variable
cstep real num. step size
cstop real num. stop value either cstop
cols int number of columns or cols
cspec comma list {cvar,cstep,cols} short form spec.
chround int col. var. rounding default: 0

Column-variable header formatting

See §2.2.2.

key type meaning default

chstyle int (0. . . 4) header style 0
chead token(s) user-defined col. var.

header
calign char (r/c/l) column alignment r
chnudge fp nudge header chnudge mu 0
chfont chars font (\math<chars>)
chmath char (s/t/d) script-, text- or displaystyle t
chsize int (-4. . . 5) font size relative to

0 => \normalsize
0

Function-value formatting

See §2.5.

key type meaning initial

(pad) int t-notation phantom padding
signs int sign handling for function values 0
diffs int insert differences, pre-pad with 0s 0
round tokens row/col. dependent rounding value

Q? tokens special cell conditional
A! tokens special cell formatting

57

Whole-of-table formatting

See §2.4.

key type meaning initial

ctitle token(s) collective title for columns
csubttl token(s) subtitle row for function-

value cols
calign char(r/c/l) column alignment r
headless suppress header row
foot token(s) table-wide footer row
rules char(s) horizontal rule spec. ThB
norules cancel all rules
rpos int (0. . . 4) row variable col. position(s) 1
rbloc integer comma list row block specification
rblocsep length extra space between row

blocks
1ex

transpose show funct. vals in rows
valign char (t/m/b) vertical alignment of table

relative to text baseline
m

Miscellaneous settings

• view, equivalent to dbg=11: show the LATEX expression for the table; see
§2.6.3.

58

Index

A! 49–51
\abovetopsep 41
adjoined tables 17
\arraystretch 6, 20

\backslashbox 25
\belowbottomsep 41
\bigskip 41
booktabs 4, 5, 35, 37, 41

calign 14, 27
chead 24, 27
chmath 24, 30
chnudge 27–29

comma list of values 28
chround 23
chsize 29
chstyle 26
cmidrow see csubttl
\cmidrulewidth 37
cols 22
column variable 5

initial value in vv-list 21
start, step, stop values 21–22

column variable header
formatting 23–29
multi-column 24–29
single column case 23

comma package option 7, 14, 30
complementary functions 31, 38–39
cspec 22–23
cstep 21–22

zero value 22, 28
cstop 21–22
csubttl 33
ctitle 31–33

*,** settings 32, 36
cvar 21–22

decimal comma
and rdata, rfile 14
semicolon use 7, 14, 30

\diagbox 25
differences 48–49

environments 7
error messages 51

ff 30, 38
foot 34, 38, 50
footer

copies header 50
footer functions 35
footer row 34
formatting

column variable header 23
function values 42–51
grouping rows 39–40
row variable column 18–19
row variable header 19
rules 35–37
title, subtitle, footer 31–35

fraction form
function values 42–43, 47
row variable values 15–20
row/col.-dependent rounding 47

function-value formatting 42–51
fraction form 42–43, 47
highlighting special values 49–51
padding with zeros 9
scientific notations 43–46
sign handling 45–47

headless 14, 34, 50
\heavyrulewidth 37

\lightrulewidth 37

59

MAX 49, 51
MIN 49
multi-function tables 17, 30–31, 47

function delimiter 30

n-ary functions 7
\nmcTabulate 6, 7

nesting 52
star (*) option 50

norules 10, 13–16, 34
package option 4

package options 4, 35, 51
padding with phantoms 44–46
padding with zeros 9

Q? 49–51
Q?* 51

ralign 13, 17
rbloc 39–40
rblocsep 40
rdata 12–20
rdelim 14
rfile 12, 14
rfont 18
rfunc 12–13
rhead’ 38
rhead 19, 21, 25
rhnudge 19
rhnudge’ 38
rhsize 20
rmath 20, 30
round 47–48
rounding value 7, 42

header row 23
row variable 11
row/col. dependent 47–48

row grouping 39–40
row variable 5

fraction form 15–20
initial value in vv-list 8, 13
start, step, stop values 8–11
values from list/macro/file 13–14
variably stepped 12–13
verbatim values 13–20, 42–43

row variable column
alignment 17
position in table 16, 37

row variable header 19–20
rows 10
rpos 14, 16, 17, 31, 37
rround 11, 14
rspec 10, 11
rstep 8

zero value 22
rstop 8
rules 35–38

edicts 4, 35
package option 4, 35

rvar’ 38
rvar 8
rverb 12–20

‘semi-verbatim’ 15

saving tables to file 53
scientific notation see also t-notation, 43
\sfrac 14, 42, 43
signs 45–47
slashbox package 25
\smallskip 41

t-notation 44–46
accommodating signs 45

\tabcolsep 6, 28
tables

‘horizontal’/‘vertical’ 5, 40–41
position on line/page 41
saving to file 53
structure 5
viewing LATEX form 53

tabular environment 6
\tabulate see \nmcTabulate
title row 31–33

subtitle row 33
transpose 6, 40–41

and rpos 16, 38, 41
examples of use 10, 15, 16, 22, 30

valign 41
view 53
vv-list 7

and decimal comma 7
row/col. variables 8, 13, 21, 22
vv@ (mode) setting 9

xfrac package 14

60

	1 Introduction
	1.1 Package options
	1.2 Table structure
	1.2.1 Transposed tables
	1.2.2 tabular environment

	1.3 Shared syntax

	2 \nmcTabulate settings
	2.1 Row variable settings
	2.1.1 Row variable specification: uniform case
	2.1.1.1 Rounding: rround

	2.1.2 Row variable specification: non-uniform case
	2.1.2.1 rfunc
	2.1.2.2 rdata, rfile, rdelim, rverb
	2.1.2.3 Fraction-form values

	2.1.3 Formatting the row variable column & header
	2.1.3.1 Position in the table: rpos
	2.1.3.2 Alignment: ralign
	2.1.3.3 Font: rfont
	2.1.3.4 Row variable header: rhead
	2.1.3.5 Nudging the header: rhnudge
	2.1.3.6 Font size of the header: rhsize
	2.1.3.7 rmath
	2.1.3.8 rvar', rhead', rhnudge'

	2.2 Column-variable settings
	2.2.1 Rounding: chround
	2.2.2 Column header formatting
	2.2.2.1 Single-column header
	2.2.2.2 Multi-column header
	2.2.2.3 diagbox, slashbox
	2.2.2.4 Built-in styles: chstyle
	2.2.2.5 User-defined header: chead
	2.2.2.6 Alignment: calign
	2.2.2.7 Nudging header entries: chnudge
	2.2.2.8 Math style: chmath
	2.2.2.9 Font size: chsize

	2.3 Multiple functions in a single table
	2.4 Whole-of-table formatting
	2.4.1 Title for function-value columns: ctitle
	2.4.2 Between header & title: csubttl
	2.4.3 Suppress/show header row
	2.4.4 Footer row: foot
	2.4.5 Horizontal rules: rules
	2.4.5.1 Header and footer rules
	2.4.5.2 Title and subtitle rules
	2.4.5.3 Trim and thickness of rules

	2.4.6 Second row variable column: rpos=3,4
	2.4.7 Separating blocks of rows: rbloc
	2.4.7.1 Adjusting the extra space rblocsep

	2.4.8 ‘Horizontal’ tables: transpose
	2.4.9 Table placement
	2.4.9.1 Vertical alignment

	2.5 Formatting function values
	2.5.1 Trailing optional argument
	2.5.1.1 Fraction-form output
	2.5.1.2 Scientific notation

	2.5.2 The t option
	2.5.2.1 Padding the exponent: (pad)
	2.5.2.2 Accommodating signs in the t-notation

	2.5.3 Indicating signs outside the t-notation
	2.5.4 Cell-, row-, column-dependent rounding
	2.5.5 Differences: diffs
	2.5.6 Formatting special values: Q? and A!
	2.5.6.1 Star option: \nmcTabulate*

	2.6 Other matters
	2.6.1 Nesting
	2.6.2 Saving tables to file
	2.6.3 Viewing the LaTeX form

	3 Reference summary
	3.1 Commands defined in numerica-tables
	3.2 Settings for \nmcTabulate

	Index

